$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

기체분리용 금속유기구조체 분리막의 최근 연구 동향 및 성과
Recent Progress on Metal-Organic Framework Membranes for Gas Separations: Conventional Synthesis vs. Microwave-Assisted Synthesis 원문보기

멤브레인 = Membrane Journal, v.27 no.1, 2017년, pp.1 - 42  

고쿨라크리쉬난 라무 (텍사스 에이 앤 엠 대학교 화학공학과) ,  정해권 (텍사스 에이 앤 엠 대학교 재료공학과)

초록
AI-Helper 아이콘AI-Helper

금속유기구조체(metal-organic framework)는 유기물와 무기물로 구성된 나노다공성 결정물질로서 일정한 세공 구조를 가지고 있다. 합성시 유기 리간드의 다양한 선택이 가능함으로 인해 다양한 세공 사이즈와 물리적/화학적 성질들을 나타내는 금속유기구조체가 가능하다. 이러한 특성들로 인해 다공성 금속유기구조체는 새로운 기체분리용 막 재료로 각광받고 있다. 그러나 고품질의 다결정 금속유기구조체막을 재조하는 것은 상당히 어려운 일인데, 이것은 지지체 표면에 금속유기구조체 결정을 자라게 하는 것이 쉽지 않기 때문이다. 지난 이십여 년 동안 마이크로 전자파를 이용한 물질 합성에 대한 연구가 상당히 진행되었는데 특히 마이크로 전자파를 이용하면 전통적인 합성법에 비해 금속유기구조체 분리막을 제조하는 과정에서의 어려움들을 극복할 수 있다. 마이크로 전자파를 이용한 다결정 분리막 제조 공정은 단시간 합성, 복잡한 구조체 합성 및 나노 결정체 합성 등의 장점이 있다. 본 총설에서는 금속유기구조체 분리막 제조 및 기체 분리에 관한 최근 연구성과들을 살펴보고 특히 마이크로 전자파를 이용한 분리막 제조 공정을 중심으로 정리한다.

Abstract AI-Helper 아이콘AI-Helper

Metal-organic frameworks (MOFs) are nanoporous materials that consist of organic and inorganic moieties, with well-defined crystalline lattices and pore structures. With a judicious choice of organic linkers present in the MOFs with different sizes and chemical groups, MOFs exhibit a wide variety of...

주제어

참고문헌 (179)

  1. D. E. Sanders, Z. P. Smith, R. L. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul, and B. D. Freeman, "Energy-efficient polymeric gas separation membranes for a sustainable future: A review", Polymer, 54, 4729 (2013). 

  2. "Materials for Separation Technology: Energy and Emission Reduction Opportunities", US Department of Energy (2004). 

  3. F. G. Kerry, "Industrial Gas Handbook: Gas Separation and Purification", CRC Press, Boca Raton (2007). 

  4. A. R. Smith and J. Klosek, "A review of air separation technologies and their integration with energy conversion processes", Fuel Process. Technol., 70, 115 (2001). 

  5. "Handbook of Compressed Gases", 4th ed ed., Kluwer Academic Publishers, Norwell, MA (1999). 

  6. H. Gunardson, "Industrial Gases in Petrochemical Processing: Chemical Industries", Marcel Dekker, Inc., New York (1998). 

  7. K. B. Lee, M. G. Beaver, H. S. Caram, and S. Sircar, "Reversible chemisorbents for carbon dioxide and their potential applications", Ind. Eng. Chem. Res., 47, 8048 (2008). 

  8. L. Barelli, G. Bidini, F. Gallorini, and S. Servili, "Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review", Energy, 33, 554 (2008). 

  9. A. J. Kidnay and W. R. Parrish "Fundamentals of Natural Gas Processing", CRC Press, Boca Raton (2006). 

  10. T. D. Burchell, R. R. Judkins, M. R. Rogers, and A. M. Williams, "A novel process and material for the separation of carbon dioxide and hydrogen sulfide gas mixtures", Carbon, 35, 1279 (1997). 

  11. H. C. Cheng and F. B. Hill, "Recovery and Purification of Light Gases by Pressure Swing Adsorption", American Chemical Society, Washington, D.C (1983). 

  12. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastava, "Advancesn in CO(2) capture technology - The US department of energy's carbon sequestration program", Int. J. Greenh. Gas Control, 2, 9 (2008). 

  13. D. Aaron and C. Tsouris, "Separation of $CO_2$ from flue gas: A review", Sep. Sci. Technol., 40, 321 (2005). 

  14. K. Scoth, "Handbook of Industrial Membranes", 2nd ed ed., Elsevier (1999). 

  15. M. T. Ravanchi, T. Kaghazchi, and A. Kargari, "Application of membrane separation processes in petrochemical industry: A review", Desalination, 235, 199 (2009). 

  16. R. W. Baker and K. Lokhandwala, "Natural gas processing with membranes: An overview", Ind. Eng. Chem. Res., 47, 2109 (2008). 

  17. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). 

  18. R. W. Baker, "Membrane Technology and Applications", John Wiley & Sons, Ltd, Chichester (2004). 

  19. P. Bernardo and E. Drioli, "Membrane gas separation progresses for process intensification strategy in the petrochemical industry", Petrol. Chem., 50, 271 (2010). 

  20. R. W. Spillman, "Economics of gas separation membranes", Chem. Eng. Prog., 85, 41 (1989). 

  21. R. Prasad, R. L. Shaner, and K. J. Doshi, "Comparison of Membranes with other Gas Separation Technologies", CRC Press, Boca Raton (1994). 

  22. P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation: A review/state of the art", Ind. Eng. Chem. Res., 48, 4638 (2009). 

  23. R. L. Burns and W. J. Koros, "Defining the challenges for $C_3H_6/C_3H_8$ separation using polymeric membranes", J. Membr. Sci., 211, 299 (2003). 

  24. M. L. Chng, Y. C. Xiao, T. S. Chung, M. Toriida, and S. Tamai, "Enhanced propylene/propane separation by carbonaceous membrane derived from poly (aryl ether ketone)/2,6-bis(4-azidobenzylidene)-4-methyl-cyclohexanone interpenetrating network", Carbon, 47, 1857 (2009). 

  25. K. Okamoto, S. Kawamura, M. Yoshino, H. Kita, Y. Hirayama, N. Tanihara, and Y. Kusuki, "Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane", Ind. Eng. Chem. Res., 38, 4424 (1999). 

  26. J. Hayashi, H. Mizuta, M. Yamamoto, K. Kusakabe, S. Morooka, and S. H. Suh, "Separation of ethane/ethylene and propane/propylene systems with a carbonized BPDA-pp'ODA polyimide membrane", Ind. Eng. Chem. Res., 35, 4176 (1996). 

  27. C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, and W. J. Koros, "High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations", J. Membr. Sci., 389, 34 (2012). 

  28. I. G. Giannakopoulos and V. Nikolakis, "Separation of propylene/propane mixtures using faujasite-type zeolite membranes", Ind. Eng. Chem. Res., 44, 226 (2005). 

  29. M. B. Shiflett and H. C. Foley, "Ultrasonic deposition of high-selectivity nanoporous carbon membranes", Science, 285, 1902 (1999). 

  30. J. Hayashi, H. Mizuta, M. Yamamoto, K. Kusakabe, and S. Morooka, "Pore size control of carbonized BPDA-pp'ODA polyimide membrane by chemical vapor deposition of carbon", J. Membr. Sci., 124, 243 (1997). 

  31. S. S. Wang, M. Y. Zeng, and Z. H. Wang, "Asymmetric molecular sieve carbon membranes", J. Membr. Sci., 109, 267 (1996). 

  32. H. Suda and K. Haraya, "Molecular-sieving effect of carbonized kapton polyimide membrane", J. Chem. Soc., Chem. Commun., 17, 1179 (1995) 

  33. C. W. Jones and W. J. Koros, "Carbon molecularsieve gas separation membranes-II. regeneration following organic-exposure", Carbon, 32, 1427 (1994). 

  34. H. Hatori, Y. Yamada, M. Shiraishi, H. Nakata, and S. Yoshitomi, "Carbon molecular-sieve films from polyimide", Carbon, 30, 305 (1992). 

  35. J. E. Koresh and A. Sofer, "Molecular-sieve carbon permselective membrane .1. presentation of a new device for gas-mixture separation", Sep. Sci. Technol., 18, 723 (1983). 

  36. C. Liu, S. Kulprathipanja, and S. Wilson, "High Flux Mixed Matrix Membranes for Separations", US Patent 20070209505 A1, Sep 13 (2007). 

  37. I. G. Giannakopoulos and V. Nikolakis, "Recovery of hydrocarbons from mixtures containing $C_3H_6,\;C_3H_8\;and\;N_2$ using NaX membranes", J. Membr. Sci., 305, 332 (2007). 

  38. T. B. Merkel, R. Blanc, J. Zeid, A. Suwarlim, B. Firat, H. Wijmans, M. Asaro, and M. Greene, "Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membranes", US Department of Energy (2007). 

  39. S. W. Kang, J. H. Kim, K. Char, J. Won, and Y. S. Kang, "Nanocomposite silver polymer electrolytes as facilitated olefin transport membranes", J. Membr. Sci., 285, 102 (2006). 

  40. T. J. Kim, B. A. Li, and M. B. Hagg, "Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture", J. Polym. Sci. Pol. Phys., 42, 4326 (2004). 

  41. A. S. Kovvali and K. K. Sirkar, "Dendrimer liquid membranes: CO(2) separation from gas mixtures", Ind. Eng. Chem. Res., 40, 2502 (2001). 

  42. J. D. Way, R. D. Noble, D. L. Reed, G. M. Ginley, and L. A. Jarr, "Facilitated transport of $CO_2$ in ion-exchange membranes", AIChE J., 33, 480 (1987). 

  43. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). 

  44. R. L. Burns and W. J. Koros, "Defining the challenges for $C_3H_6/C_3H_8$ separation using polymeric membranes", J. Membr. Sci., 211, 299 (2003). 

  45. J. Caro and M. Noack, "Zeolite membranes - Recent developments and progress", Micropor. Mesopor. Mat., 115, 215 (2008). 

  46. Y. S. Lin, I. Kumakiri, B. N. Nair, and H. Alsyouri, "Microporous inorganic membranes", Sep. Purif. Methods, 31, 229 (2002). 

  47. E. E. McLeary, J. C. Jansen, and F. Kapteijn, "Zeolite based films, membranes and membrane reactors: Progress and prospects", Micropor. Mesopor. Mat., 90, 198 (2006). 

  48. K. A. Stoitsas, A. Gotzias, E. S. Kikkinides, T. A. Steriotis, N. K. Kanellopoulos, M. Stoukides, and V. T. Zaspalis, "Porous ceramic membranes for propane-propylene separation via the p-complexation mechanism: Unsupported systems", Micropor. Mesopor. Mat., 78, 235 (2005). 

  49. N. W. Ockwig and T. M. Nenoff, "Membranes for hydrogen separation", Chem. Rev., 107, 4078 (2007). 

  50. M. Shah, M. C. McCarthy, S. Sachdeva, A. K. Lee, and H. K. Jeong, "Current status of metal-organic framework membranes for gas separations: Promises and challenges", Ind. Eng. Chem. Res., 51, 2179 (2012). 

  51. T. T. Moore and W. J. Koros, "Non-ideal effects in organic-inorganic materials for gas separation membranes", J. Mol. Struct., 739, 87 (2005). 

  52. L. Xu, M. Rungta, M. K. Brayden, M. V. Martinez, B. A. Stears, G. A. Barbay, and W. J. Koros, "Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations", J. Membr. Sci., 423-424, 314 (2012). 

  53. S. Lagorsse, F. D. Magalhaes, and A. Mendes, "Aging study of carbon molecular sieve membranes", J. Membr. Sci., 310, 494 (2008). 

  54. E. E. McLeary, J. C. Jansen, and F. Kapteijn, "Zeolite based films, membranes and membrane reactors: Progress and prospects", Micropor. Mesopor. Mat., 90, 198 (2006). 

  55. J. J. Perry, J. A. Perman, and M. J. Zaworotko, "Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks", Chem. Soc. Rev., 38, 1400 (2009). 

  56. G. Ferey, "Hybrid porous solids: past, present, future", Chem. Soc. Rev., 37, 191 (2008). 

  57. J. L. C. Rowsell and O. M. Yaghi, "Metal-organic frameworks: A new class of porous materials", Micropor. Mesopor. Mat., 73, 3 (2004). 

  58. Y. J. Sun and H. C. Zhou, "Recent progress in the synthesis of metal-organic frameworks", Sci. Technol. Adv. Mater., 16, 054202 (2015). 

  59. N. Stock and S. Biswas, "Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites", Chem. Rev., 112, 933 (2012). 

  60. A. Betard and R. A. Fischer, "Metal-organic framework thin films: From fundamentals to applications", Chem. Rev., 112, 1055 (2012). 

  61. J. Klinowski, F. A. A. Paz, P. Silva, and J. Rocha, "Microwave-assisted synthesis of metal-organic frameworks", Dalton T., 40, 321 (2011). 

  62. D. Zacher, O. Shekhah, C. Woll, and R. A. Fischer, "Thin films of metal-organic frameworks", Chem. Soc. Rev., 38, 1418 (2009). 

  63. E. Haldoupis, S. Nair, and D. S. Sholl, "Efficient calculation of diffusion limitations in metal organic framework materials: A tool for identifying materials for kinetic separations", J. Am. Chem. Soc., 132, 7528 (2010). 

  64. J. R. Li, R. J. Kuppler, and H. C. Zhou, "Selective gas adsorption and separation in metal-organic frameworks", Chem. Soc. Rev., 38, 1477 (2009). 

  65. L. J. Murray, M. Dinca, and J. R. Long, "Hydrogen storage in metal-organic frameworks", Chem. Soc. Rev., 38, 1294 (2009). 

  66. P. Horcajada, C. Serre, D. Grosso, C. Boissiere, S. Perruchas, C. Sanchez, and G. Ferey, "Colloidal route for preparing optical thin films of nanoporous metal-organic frameworks", Adv. Mater., 21, 1931 (2009). 

  67. M. D. Allendorf, R. J. T. Houk, L. Andruszkiewicz, A. A. Talin, J. Pikarsky, A. Choudhury, K. A. Gall, and P. J. Hesketh, "Stress-induced Chemical Detection Using Flexible Metal-Organic Frameworks", J. Am. Chem. Soc., 130, 14404 (2008). 

  68. Z. H. Xiang, Z. Hu, D. P. Cao, W. T. Yang, J. M. Lu, B. Y. Han, and W. C. Wang, "Metal-organic frameworks with incorporated carbon nanotubes: Improving carbon dioxide and methane storage capacities by lithium doping", Angew. Chem. Int. Ed., 50, 491 (2011). 

  69. D. O. Kim, J. Park, G. R. Ahn, H. J. Jeon, J. S. Kim, D. W. Kim, M. S. Jung, S. W. Lee, and S. H. Shin, "Synthesis of MOF having functional side group", Inorg. Chim. Acta, 370, 76 (2011). 

  70. M. Schlesinger, S. Schulze, M. Hietschold, and M. Mehring, "Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [ $Cu_2(btc)_3(H_2O)_3$ ] and [ $Cu_2(btc)(OH)(H_2O)$ ]", Micropor. Mesopor. Mat., 132, 121 (2010). 

  71. C. M. Lu, J. Liu, K. F. Xiao, and A. T. Harris, "Microwave enhanced synthesis of MOF-5 and its $CO_2$ capture ability at moderate temperatures across multiple capture and release cycles", Chem. Eng. J., 156, 465 (2010). 

  72. N. A. Khan, E. Haque, and S. H. Jhung, "Rapid syntheses of a metal-organic framework material $Cu_3(BTC)_2(H_2O)_3$ under microwave: a quantitative analysis of accelerated syntheses", Phys. Chem. Chem. Phys., 12, 2625 (2010). 

  73. W. J. Son, J. S. Choi, and W. S. Ahn, "Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials", Micropor. Mesopor. Mat., 113, 31 (2008). 

  74. J. Y. Choi, J. Kim, S. H. Jhung, H. K. Kim, J. S. Chang, and H. K. Chae, "Microwave synthesis of a porous metal-organic framework, zinc terephthalate MOF-5", Bull. Korean Chem. Soc., 27, 1523 (2006). 

  75. J. W. Ren, T. Segakweng, H. W. Langmi, N. M. Musyoka, B. C. North, M. Mathe, and D. Bessarabov, "Microwave-assisted modulated synthesis of zirconium-based metal-organic framework (Zr-MOF) for hydrogen storage applications", Int. J. Mater. Res., 105, 516 (2014). 

  76. N. A. Khan, I. J. Kang, H. Y. Seok, and S. H. Jhung, "Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101", Chem. Eng. J., 166, 1152 (2011). 

  77. T. Chalati, P. Horcajada, R. Gref, P. Couvreur, and C. Serre, "Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A", J. Mater. Chem., 21, 2220 (2011). 

  78. P. Silva, A. A. Valente, J. Rocha, and F. A. A. Paz, "Fast microwave synthesis of a microporous lanthanide organic framework", Cryst. Growth Des., 10, 2025 (2010). 

  79. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur, and R. Gref, "Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging", Nat. Mater., 9, 172 (2010). 

  80. M. Tonigold, Y. Lu, B. Bredenkotter, B. Rieger, S. Bahnmuller, J. Hitzbleck, G. Langstein, and D. Volkmer, "Heterogeneous catalytic oxidation by MFU-1: A cobalt(II)-containing metal-organic framework", Angew. Chem. Int. Ed., 48, 7546 (2009). 

  81. K. M. L. Taylor-Pashow, J. Della Rocca, Z. G. Xie, S. Tran, and W. B. Lin, "Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery", J. Am. Chem. Soc., 131, 14261 (2009). 

  82. J.-H. Park, S.-H. Park, and S.-H. Jhung, "Microwave-syntheses of zeolitic imidazolate framework material, ZIF-8", J. Korean Chem. Soc., 53, 553 (2009). 

  83. X. F. Wang, Y. B. Zhang, H. Huang, J. P. Zhang, and X. M. Chen, "Microwave-assisted solvothermal synthesis of a dynamic porous metal-carboxylate framework", Cryst. Growth Des., 8, 4559 (2008). 

  84. B. Liu, R. Q. Zou, R. Q. Zhong, S. Han, H. Shioyama, T. Yamada, G. Maruta, S. Takeda, and Q. Xu, "Microporous coordination polymers of cobalt(II) and manganese(II) 2,6-naphthalenedicarboxylate: preparations, structures and gas sorptive and magnetic properties", Micropor. Mesopor. Mat., 111, 470 (2008). 

  85. Y. S. Bae, K. L. Mulfort, H. Frost, P. Ryan, S. Punnathanam, L. J. Broadbelt, J. T. Hupp, and R. Q. Snurr, "Separation of $CO_2$ from $CH_4$ using mixed-ligand metal-organic frameworks", Langmuir, 24, 8592 (2008). 

  86. S. H. Jhung, J. H. Lee, J. W. Yoon, C. Serre, G. Ferey, and J. S. Chang, "Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability", Adv. Mater., 19, 121 (2007). 

  87. S. H. Jhung, J. H. Lee, and J. S. Chang, "Microwave synthesis of a nanoporous hybrid material, chromium trimesate", Bull. Korean Chem. Soc., 26, 880 (2005). 

  88. S. R. Venna and M. A. Carreon, "Highly permeable zeolite imidazolate framework-8 membranes for $CO_2/CH_4$ separation", J. Am. Chem. Soc., 132, 76 (2010). 

  89. M. C. McCarthy, V. Varela-Guerrero, G. V. Barnett, and H. K. Jeong, "Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures", Langmuir, 26, 14636 (2010). 

  90. Y. Y. Liu, E. P. Hu, E. A. Khan, and Z. P. Lai, "Synthesis and characterization of ZIF-69 membranes and separation for $CO_2/CO$ mixture", J. Membr. Sci., 353, 36 (2010). 

  91. Y. S. Li, F. Y. Liang, H. Bux, A. Feldhoff, W. S. Yang, and J. Caro, "Molecular sieve membrane: Supported metal-organic framework with high hydrogen selectivity", Angew. Chem. Int. Ed., 49, 548 (2010). 

  92. Y. S. Li, H. Bux, A. Feldhoff, G. L. Li, W. S. Yang, and J. Caro, "Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes", Adv. Mater., 22, 3322 (2010). 

  93. A. S. Huang, H. Bux, F. Steinbach, and J. Caro, "Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-Aminopropyltriethoxysilane as covalent linker", Angew. Chem. Int. Ed., 49, 4958 (2010). 

  94. H. Bux, F. Y. Liang, Y. S. Li, J. Cravillon, M. Wiebcke, and J. Caro, "Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis", J. Am. Chem. Soc., 131, 16000 (2009). 

  95. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", P. Natl. Acad. Sci. USA, 103, 10186 (2006). 

  96. D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons, and T. Duren, "Opening the gate: Framework flexibility in ZIF-8 explored by experiments and simulations", J. Am. Chem. Soc., 133, 8900 (2011). 

  97. H. T. Kwon, H. K. Jeong, A. S. Lee, H. S. An, and J. S. Lee, "Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances", J. Am. Chem. Soc., 137, 12304 (2015). 

  98. S. Hermes, D. Zacher, A. Baunemann, C. Woll, and R. A. Fischer, "Selective growth and MOCVD loading of small single crystals of MOF-5 at alumina and silica surfaces modified with organic self-assembled monolayers", Chem. Mater., 19, 2168 (2007). 

  99. O. M. Yaghi and H. L. Li, "Hydrothermal synthesis of a metal-organic framework containing large rectangular channels", J. Am. Chem. Soc., 117, 10401 (1995). 

  100. A. Ramanan and M. S. Whittingham, "How molecules turn into solids: the case of self-assembled metal-organic frameworks", Cryst. Growth Des., 6, 2419 (2006). 

  101. R. G. Pearson, "Hard and Soft Acids and Bases", J. Am. Chem. Soc., 85, 3533 (1963). 

  102. O. M. Yaghi, G. M. Li, and H. L. Li, "Selective binding and removal of guests in a microporous metal-organic framework", Nature, 378, 703 (1995). 

  103. A. Rabenau, "The role of hydrothermal synthesis in preparative chemistry", Angew. Chem. Int. Ed., 24, 1026 (1985). 

  104. B. F. Hoskins and R. Robson, "Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2", J. Am. Chem. Soc., 112, 1546 (1990). 

  105. S. Keskin and S. Kizilel, "Biomedical applications of metal organic frameworks", Ind. Eng. Chem. Res., 50, 1799 (2011). 

  106. U. P. Mueller, H.; Hesse, M.; Wessel, H., "Method for Electrochemical Production of a Crystalline Porous Metal Organic Skeleton Material", World Patent WO20055049892, Feburary 6 (2005). 

  107. T. Friscic, "New opportunities for materials synthesis using mechanochemistry", J. Mater. Chem., 20, 7599 (2010). 

  108. A. L. Garay, A. Pichon, and S. L. James, "Solvent-free synthesis of metal complexes", Chem. Soc. Rev., 36, 846 (2007). 

  109. P. J. Beldon, L. Fabian, R. S. Stein, A. Thirumurugan, A. K. Cheetham, and T. Friscic, "Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry", Angew .Chem. Int. Ed., 49, 9640 (2010). 

  110. T. Friscic, D. G. Reid, I. Halasz, R. S. Stein, R. E. Dinnebier, M. J. Duer, "Ion- and liquid-assisted grinding: Improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating", Angew. Chem. Int. Ed., 49, 712 (2010). 

  111. J. H. Bang and K. S. Suslick, "Applications of ultrasound to the synthesis of nanostructured materials", Adv. Mater., 22, 1039 (2010). 

  112. T. J. Mason and D. Peters, "In Practical Sonochemistry: Power Ultrasound Uses and Applications", Horwood Publishing, Chichester (2003). 

  113. D. J. Tranchemontagne, J. R. Hunt, and O. M. Yaghi, "Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0", Tetrahedron, 64, 8553 (2008). 

  114. B. l. Hayes, "Microwave Synthesis - Chemistry at the Speed of Light", CEM Publishing, Raleigh, NC (2002). 

  115. N. A. Khan and S. H. Jhung, "Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction", Coord. Chem. Rev., 285, 11 (2015). 

  116. B. L. Hayes, "Recent advances in microwave-assisted synthesis", Aldrichim Acta, 37, 66 (2004). 

  117. C. O. Kappe, "Controlled microwave heating in modern organic synthesis", Angew. Chem. Int. Ed., 43, 6250 (2004). 

  118. A. G. Whittaker and D. M. P. Mingos, "Microwave-Assisted Solid-State Reactions Involving Metal Powders", J. Chem. Soc. Dalton, 2073 (1995). 

  119. J. H. Booske, R. F. Cooper, S. A. Freeman, K. I. Rybakov, and V. E. Semenov, "Microwave ponderomotive forces in solid-state ionic plasmas", Phys. Plasmas, 5, 1664 (1998). 

  120. D. Adam, "Microwave chemistry: Out of the kitchen", Nature, 421, 571 (2003) 

  121. E. Haque, N. A. Khan, J. H. Park, and S. H. Jhung, "Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: A kinetic study", Chem.-Eur. J., 16, 1046 (2010). 

  122. N. A. Khan and S. H. Jhung, "Phase-transition and phase-selective synthesis of porous chromium-benzenedicarboxylates", Cryst. Growth Des., 10, 1860 (2010). 

  123. A. J. Burggraaf, "Fundamentals of Inorganic Membrane Science and Technology", Elsevier, New York (1996). 

  124. V. V. Guerrero, Y. Yoo, M. C. McCarthy, and H. K. Jeong, "HKUST-1 membranes on porous supports using secondary growth", J. Mater. Chem., 20, 3938 (2010). 

  125. Y. Yoo, Z. P. Lai, and H. K. Jeong, "Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth", Micropor. Mesopor. Mat., 123, 100 (2009). 

  126. R. Ranjan and M. Tsapatsis, "Microporous metal organic framework membrane on porous support using the seeded growth method", Chem. Mater., 21, 4920 (2009). 

  127. Y. Yoo and H. K. Jeong, "Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition", Chem. Commun., 2441 (2008). 

  128. S. Hermes, F. Schroder, R. Chelmowski, C. Woll, and R. A. Fischer, "Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111)", J. Am. Chem. Soc., 127, 13744 (2005). 

  129. A. S. Huang, W. Dou, and J. Caro, "Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization", J. Am. Chem. Soc., 132, 15562 (2010). 

  130. J. G. Nguyen and S. M. Cohen, "Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification", J. Am. Chem. Soc., 132, 4560 (2010). 

  131. Y. Yoo, V. Varela-Guerrero, and H. K. Jeong, "Isoreticular metal-organic frameworks and their membranes with enhanced crack resistance and moisture stability by surfactant-assisted drying", Langmuir, 27, 2652 (2011). 

  132. D. Zacher, R. Schmid, C. Woll, and R. A. Fischer, "Surface chemistry of metal-organic frameworks at the liquid-solid interface", Angew. Chem. Int. Ed., 50, 176 (2011). 

  133. O. Shekhah, J. Liu, R. A. Fischer, and C. Woll, "MOF thin films: existing and future applications", Chem. Soc. Rev., 40, 1081 (2011). 

  134. B. Liu and R. A. Fischer, "Liquid-phase epitaxy of metal organic framework thin films", Sci. China Chem., 54, 1851 (2011). 

  135. H. T. Kwon and H. K. Jeong, "Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth", Chem. Commun., 49, 3854 (2013). 

  136. A. M. Spokoyny, D. Kim, A. Sumrein, and C. A. Mirkin, "Infinite coordination polymer nano- and microparticle structures", Chem. Soc. Rev., 38, 1218 (2009). 

  137. E. Biemmi, C. Scherb, and T. Bein, "Oriented growth of the metal organic framework $Cu_3(BTC)_2(H_2O)_3{\cdot}xH_2O$ tunable with functionalized self-assembled monolayers", J. Am. Chem. Soc., 129, 8054 (2007). 

  138. D. Zacher, A. Baunemann, S. Hermes, and R. A. Fischer, "Deposition of microcrystalline [ $Cu_3(btc)_2$ ] and [ $Zn_2(bdc)_2(dabco)$ ] at alumina and silica surfaces modified with patterned self assembled organic monolayers: Evidence of surface selective and oriented growth", J. Mater. Chem., 17, 2785 (2007). 

  139. O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R. A. Fischer, and C. Woll, "Step-by-step route for the synthesis of metal-organic frameworks", J. Am. Chem. Soc., 129, 15118 (2007). 

  140. O. Shekhah, "Layer-by-layer method for the synthesis and growth of surface mounted metal-organic frameworks (SURMOFs)", Materials, 3, 1302 (2010). 

  141. O. Shekhah, H. Wang, M. Paradinas, C. Ocal, B. Schupbach, A. Terfort, D. Zacher, R. A. Fischer, and C. Woll, "Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy", Nat. Mater., 8, 481 (2009). 

  142. R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B. F. Sels, and D. E. De Vos, "Patterned growth of metal-organic framework coatings by electrochemical synthesis", Chem. Mater., 21, 2580 (2009). 

  143. G. R. Gavalas, "Zeolite Membranes for Gas and Liquid Separations", John Wiley & Sons, Ltd, New York (2006). 

  144. M. C. Lovallo, A. Gouzinis, and M. Tsapatsis, "Synthesis and characterization of oriented MFI membranes prepared by secondary growth", AIChE J., 44, 1903 (1998). 

  145. Y. Y. Liu, Z. F. Ng, E. A. Khan, H. K. Jeong, C. B. Ching, and Z. P. Lai, "Synthesis of continuous MOF-5 membranes on porous alpha-alumina substrates", Micropor. Mesopor. Mat., 118, 296 (2009). 

  146. H. L. Guo, G. S. Zhu, I. J. Hewitt, and S. L. Qiu, ""Twin Copper Source" growth of metal-organic framework membrane: $Cu_3(BTC)_2$ with high permeability and selectivity for recycling $H_2$ ", J. Am. Chem. Soc., 131, 1646 (2009). 

  147. E. Barankova, X. Tan, L. F. Villalobos, E. Litwiller, and K.-V. Peinemann, "A metal chelating porous polymeric support: The missing link for a defect-free metal-organic framework composite membrane", Angew. Chem. Int. Ed., 56, 1 (2017). 

  148. A. S. Huang and J. Caro, "Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity", Angew. Chem. Int. Ed., 50, 4979 (2011). 

  149. H. T. Kwon and H. K. Jeong, "In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation", J. Am. Chem. Soc., 135, 10763 (2013). 

  150. M. A. Snyder and M. Tsapatsis, "Hierarchical nanomanufacturing: From shaped zeolite nanoparticles to high-performance separation membranes", Angew .Chem. Int. Ed., 46, 7560 (2007). 

  151. Y. X. Hu, X. L. Dong, J. P. Nan, W. Q. Jin, X. M. Ren, N. P. Xu, and Y. M. Lee, "Metal-organic framework membranes fabricated via reactive seeding", Chem. Commun., 47, 737 (2011). 

  152. J. P. Nan, X. L. Dong, W. J. Wang, W. Q. Jin, and N. P. Xu, "Step-by-step seeding procedure for preparing HKUST-1 membrane on porous alpha-alumina support", Langmuir, 27, 4309 (2011). 

  153. S. Aguado, J. Canivet, and D. Farrusseng, "Engineering structured MOF at nano and macroscales for catalysis and separation", J. Mater. Chem., 21, 7582 (2011). 

  154. X. Q. Zou, F. Zhang, S. Thomas, G. S. Zhu, V. Valtchev, and S. Mintova, "Co3(HCOO)6 microporous metal-organic framework membrane for separation of CO2/CH4 mixtures", Chem.-Eur. J., 17, 12076 (2011). 

  155. N. C. Su, D. T. Sun, C. M. Beavers, D. K. Britt, W. L. Queen, and J. J. Urban, "Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes", Energ. Environ. Sci., 9, 922 (2016). 

  156. Y. S. Li, F. Y. Liang, H. G. Bux, W. S. Yang, and J. Caro, "Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation", J. Membr. Sci., 354, 48 (2010). 

  157. H. Bux, C. Chmelik, R. Krishna, and J. Caro, "Ethene/ethane separation by the MOF membrane ZIF-8: Molecular correlation of permeation, adsorption, diffusion", J. Membr. Sci., 369, 284 (2011). 

  158. Z. Ni and R. I. Masel, "Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis", J. Am. Chem. Soc., 128, 12394 (2006). 

  159. Y. Q. Zhu, Q. Liu, and A. S. Huang, "Microwave synthesis of tubular zeolitic imidazolate framework ZIF-8 membranes for $CO_2/CH_4$ separation", Sep. Sci. Technol., 51, 883 (2016). 

  160. H. L. Guo, G. S. Zhu, H. Li, X. Q. Zou, X. J. Yin, W. S. Yang, S. L. Qiu, and R. Xu, "Hierarchical growth of large-scale ordered zeolite silicalite-1 membranes with high permeability and selectivity for recycling $CO_2$ ", Angew .Chem. Int. Ed., 45, 7053 (2006). 

  161. J. C. Poshusta, R. D. Noble, and J. L. Falconer, "Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes", J. Membr. Sci., 160, 115 (1999). 

  162. Y. C. Pan and Z. O. Lai, "Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions", Chem. Commun., 47, 10275 (2011). 

  163. M. Arnold, P. Kortunov, D. J. Jones, Y. Nedellec, J. Karger, and J. Caro, "Oriented crystallisation on supports and anisotropic mass transport of the metal-organic framework manganese formate", Eur. J. Inorg. Chem., 2007, 60 (2007). 

  164. R. S. A. de Lange, J. H. A. Hekkink, K. Keizer, A. J. Burggraaf, and Y. H. Ma, "Sorption studies of microporous sol-gel modified ceramic membranes", J. Porous Mat., 2, 141 (1995). 

  165. H. Bux, A. Feldhoff, J. Cravillon, M. Wiebcke, Y. S. Li, and J. Caro, "Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation", Chem. Mater., 23, 2262 (2011). 

  166. A. Vanderdrift, "Evolutionary selection a principle governing growth orientation in vapour-deposited layers", Philips Res. Rep., 22, 267 (1967). 

  167. A. J. Bons and P. D. Bons, "The development of oblique preferred orientations in zeolite films and membranes", Micropor. Mesopor. Mat., 62, 9 (2003). 

  168. L. Diestel, H. Bux, D. Wachsmuth, and J. Caro, "Pervaporation studies of n-hexane, benzene, mesitylene and their mixtures on zeolitic imidazolate framework-8 membranes", Micropor. Mesopor. Mat., 164, 288 (2012). 

  169. D. Peralta, G. Chaplais, A. Simon-Masseron, K. Barthelet, C. Chizallet, A. A. Quoineaud, and G. D. Pirngruber, "Comparison of the behavior of metal-organic frameworks and zeolites for hydrocarbon separations", J. Am. Chem. Soc., 134, 8115 (2012). 

  170. E. U. S. E. P. Agency, "Summary and Analysis of the 2009 Gasoline Benzene Pre-Compliance Reports", Washington (2009). 

  171. C. S. Cundy, "Microwave techniques in the synthesis and modification of zeolite catalysts. A review", Collect. Czech. Chem. C, 63, 1699 (1998). 

  172. Y. S. Li and W. S. Yang, "Microwave synthesis of zeolite membranes: A review", J. Membr. Sci., 316, 3 (2008). 

  173. X. B. Chen, W. S. Yang, J. Liu, and L. W. Lin, "Synthesis of zeolite NaA membranes with high permeance under microwave radiation on mesoporous-layer-modified macroporous substrates for gas separation", J. Membr. Sci., 255, 201 (2005). 

  174. X. C. Xu, W. S. Yang, J. Liu, and L. W. Lin, "Synthesis of a high-permeance NaA zeolite membrane by microwave heating", Adv. Mater., 12, 195 (2000). 

  175. X. C. Xu, W. S. Yang, J. Liu, and L. W. Lin, "Fast formation of NaA zeolite membrane in the microwave field", Chinese Sci. Bull., 45, 1179 (2000). 

  176. J. Motuzas, A. Julbe, R. D. Noble, A. van der Lee, and Z. J. Beresnevicius, "Rapid synthesis of oriented silicalite-1 membranes by microwave-assisted hydrothermal treatment", Micropor. Mesopor. Mat., 92, 259 (2006). 

  177. I. Girnus, M. M. Pohl, J. Richtermendau, M. Schneider, M. Noack, D. Venzke, and J. Caro, "Synthesis of Alpo4-5 aluminumphosphate molecular-sieve crystals for membrane applications by microwave-heating", Adv. Mater., 7, 711 (1995). 

  178. X. C. Xu, Y. Bao, C. S. Song, W. S. Yang, J. Liu, and L. W. Lin, "Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane", Micropor. Mesopor. Mat., 75, 173 (2004). 

  179. K. Weh, M. Noack, I. Sieber, and J. Caro, "Permeation of single gases and gas mixtures through faujasite-type molecular sieve membranes", Micropor. Mesopor. Mat., 54, 27 (2002). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로