$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

자기부상시스템을 위한 교수-학습 최적화 알고리즘 기반의 퍼지 PID 제어기 설계
Design of TLBO-based Optimal Fuzzy PID Controller for Magnetic Levitation System 원문보기

전기학회논문지 = The Transactions of the Korean Institute of Electrical Engineers, v.66 no.4, 2017년, pp.701 - 708  

조재훈 (Smart Logistics Technology Institute, Hankyong National University) ,  김용태 (Department of Electrical, Electronic and Control Engineering, Hankyong National University)

Abstract AI-Helper 아이콘AI-Helper

This paper proposes an optimum design method using Teaching-Learning-based optimization for the fuzzy PID controller of Magnetic levitation rail-guided vehicle. Since an attraction-type levitation system is intrinsically unstable, it is difficult to completely satisfy the desired performance through...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Many studies dealing with Maglev system are based on linearization model using a Taylor series. In this paper, we use the linearized Maglev model based on a Taylor series of the actual nonlinear dynamic model and force distribution at nominal operating points. Fig.

이론/모형

  • In the paper, a fuzzy PID controller is proposed for the Maglev system and optimum gains of fuzzy PID controller are selected by TLBO algorithm. The fuzzy PID controller with the four scaling parameters carries out the control of Maglev system and the optimal parameters of the fuzzy PID controller are selected by TLBO.
  • In the paper, a fuzzy PID controller with fixed parameters is applied and then the optimum gains of fuzzy PID controller are selected by Teaching-Learning-based Optimization (TLBO) method. For the fitness function of TLBO, the performance index of PID controller is used.
  • To verify the proposed control method, a Maglev model was established by using MATLAB/Simulink and global optimization toolbox for simulation of gentic algorithm(GA) and particle swarm optimization(PSO). Table 2 shows initial parameters for the proposed algorithm and GA.
본문요약 정보가 도움이 되었나요?

참고문헌 (15)

  1. Lee, Hyung-Woo, Ki-Chan Kim, and Ju Lee, "Review of maglev train technologies," IEEE transactions on magnetics, vol. 42, No. 7, pp. 1917-1925, 2006. 

  2. Cho HW, Han HS, Lee JM, Kim BS, Sung SY, "Design considerations of EM-PM hybrid levitation and propulsion device for magnetically levitated vehicle," IEEE Transactions on Magnetics, vol. 45 No. 10, pp. 4632-4635, 2009. 

  3. Cho HW, Kim CH, Han HS, Lee JM, Kim BS, Kim DS, Lee YS, "Design and Characteristic Analysis of Hybrid-Type Levitation and Propulsion Device for High-Speed Maglev Vehicle," The Transactions of Korean Institute of Electrical Engineers, vol. 59, No. 4, pp. 715-721, 2010. 

  4. Tozoni OV, "Amlev-a self-regulating version of maglev," IEEE transactions on magnetics, vol. 37 No. 6, pp. 3925-3933, 2001. 

  5. Danfeng Z, Jie L, "Analysis of the low-frequency vibration of ems maglev vehicles," Control and Automation, 2007. ICCA 2007, pp 3157-3161, 2007. 

  6. Paddison JE, Ohsaki H, Masada E, "Control strategies for maglev electromagnetic suspension bogies," Decision and Control, 1996., Proceedings of the 35th IEEE Conference on, IEEE, vol. 3, pp. 2796-2797, 1996. 

  7. Taghirad H, Abrishamchian M, Ghabcheloo R, Toosi K, "Electromagnetic levitation system: An experimental approach," Proceedings of the 7th international Conference on Electrical Engineering, Power System Vol, pp. 19-26, 1998. 

  8. Chen H, Hao A, Long Z, "The controller design and performance index analysis of maglev train's suspension system," Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on, IEEE, vol. 1, pp 596-599, 2004. 

  9. Hurley WG, Hynes M, Wole WH, "Pwm control of a magnetic suspension system," IEEE Transactions on education, vol. 47, No. 2, pp. 165-173, 2004. 

  10. Zhang X, Liu H, Li Y, "Adaptive current-loop design for an electromagnetic suspension system," Intelligent Computation Technology and Automation (ICICTA), 2011 International Conference on, IEEE, vol. 1, pp. 341-344, 2011. 

  11. Lee BK, Kim IH, Kim JH, "Stability analysis and proposal of the simplified form of a fuzzy pid controller with fixed parameters," Journal of Korean Institute of Intelligent Systems, vol. 14, No. 7, pp. 807-815, 2004. 

  12. Xu JX, Hang CC, Liu C, "Parallel structure and tuning of a fuzzy pid controller," Automatica, vol. 36, No. 5, pp. 673-684, 2000. 

  13. Kim JH, "A suggestion of nonlinear fuzzy pid controller to improve transient responses of nonlinear or uncertain systems," Journal of Korean Institute of Intelligent Systems, vol. 5, No. 4, pp. 87-100, 1995. 

  14. Cho JH, Kim YT, "Design of pid controller for magnetic levitation RGV using genetic algorithm based on clonal selection," Journal of Korean Institute of Intelligent Systems, vol. 22, No. 2, pp. 239-245, 2012. 

  15. Rao RV, Savsani VJ, Vakharia D, "Teaching learningbased optimization: a novel method for constrained mechanical design optimization problems," Computer-Aided Design, vol. 43, No. 3 pp. 303-315, 2011. 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로