$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

판상형 산화아연의 합성 및 응용에 관한 연구 동향 원문보기

세라미스트 = Ceramist, v.20 no.4, 2017년, pp.55 - 73  

장의순 (금오공과대학교 응용화학과)

Abstract AI-Helper 아이콘AI-Helper

As one of the most versatile semiconductors, zinc oxide (ZnO) with one-dimensional (1-D) nanostructures has been significantly developed for the application of ultraviolet (UV) lasers, photochemical sensors, photocatalysts, and so on. Such 1-D nanowires could be easily achieved due to the anisotropi...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
UV-laser 기술 사용 시 ZnO의 threshold power density이 높아지는 이유는? laser threshold power density 값을 낮추기 위해서는 cavity length를 늘리거나 reflecting mirror planes 의 reflectance를 증가시켜야 한다.7),8) 그러나 ZnO의 crystal 특성상 [0001] direction으로 빠르게 자라나려는 anisotropic crystal growth rate (V[0001] >> V[0110] > V[0001])으로9) 인해 crystal이 rod형태로 자라날수록 reflecting mirror planes으로 작용하는(0001)면의 면적이 줄어들게 되어 laser threshold power density 값이 증가하게 된다. 실제로 P.
Wurzite structure를 가지는 ZnO가 polariton lasing이 가능한 이유는? Wurzite structure를 갖는 ZnO는 3.37eV의 direct wide band-gap을 가지고 있으며 Exciton binding energy가 60 meV로써 room-temperature의 thermal energy인 26 meV보다 크기 때문에 polariton lasing이 가능하다.4-6) 따라서 기존 laser가 갖는 복잡한 multistacking quantum-well structure가 없어도 ZnO 자체로 UV-laser로 활용될 수 있기 때문에 2000년대 초반 UV-laser 기반의 Blue-lay disc의 핵심기술로 주목 받게 되었다.
UV-laser은 어떤 단점이 있는가? 4-6) 따라서 기존 laser가 갖는 복잡한 multistacking quantum-well structure가 없어도 ZnO 자체로 UV-laser로 활용될 수 있기 때문에 2000년대 초반 UV-laser 기반의 Blue-lay disc의 핵심기술로 주목 받게 되었다. 그러나 UV-laser는 IR-laser와 비교하여 bandgap이 큰 물질을 사용해야 하기 때문에 laseremission을 위한 threshold power density 값이 매우 크다는 단점이 있으며 이로 인해 optoelectronic device 에서 열이 많이 발생하게 된다. laser threshold power density 값을 낮추기 위해서는 cavity length를 늘리거나 reflecting mirror planes 의 reflectance를 증가시켜야 한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (67)

  1. G. A. O. Oprea, E. Andronescu, D. Ficai, A. Ficai, F. N. Oktar, and M. Yetmez, "ZnO Applications and Challenges,"Curr. Org. Chem., 18 [2] 192-203 (2014). 

  2. O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, and A. Kahru, "Toxicity of Ag, CuO and ZnO Nanoparticles to Selected Environmentally Relevant Test Organisms and Mammalian Cells In Vitro: a Critical Review," Arch. Toxicol., 87 [7] 1181- 1200 (2013). 

  3. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room- Temperature Ultraviolet Nanowire Nanolasers," Science, 292 [8] 1897-99 (2001). 

  4. D. C. Reynolds, D. C. Look, B. Jogai, and T. C. Collins, "Polarition and Free-Excition-Like Photoluminescence in ZnO", Appl. Phys. Lett., 79 [23] 3794-96 (2001). 

  5. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, "Condensation of Semiconductor Microcavity Exciton Polaritons", Science, 298 [4] 199- 202 (2002). 

  6. M. Zamfirescu, A. Kavokin, B. Gil, and G. Malpuech, "ZnO as a Material Mostly Adapted for Realization of Room-Temperature Polariton Lasers", Phys. Stat. Sol. (a), 195 [3] 563-67 (2003). 

  7. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, "Optically Pumped Lasing of ZnO at Room Temperature", Appl. Phys. Lett., 79 [23] 3794-96 (2001). 

  8. J.-H. Choy, E.-S. Jang, J.-H. Won, J.-H. Chung, D.-J. Jang, Y.-W. Kim, "Hydrothermal Route to ZnO Nanocoral Reefs and Nanofibers", Appl. Phys. Lett., 84 [2] 287-89 (2004). 

  9. R. A. Laudise, and A. A. Ballman, "Hydrothermal Synthesis of Zinc Oxide and Zinc Sulfide," J. Phys. Chem., 64 [5] 688-91 (1960). 

  10. R. S. Wagner, and W. C. Ellis, "Vapor-Liquid-Solid Mechanism of Single Crystal Growth," Appl. Phys. Lett., 70 [17] 2230-32 (1997). 

  11. Y. Wu, and P. Yang, "Direct Observation of Vapor- Liquid-Solid Nanowire Growth", J. Am. Chem. Soc., 123 [13] 3165-66 (2001). 

  12. Y. Wu, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, "One-Dimensional Nanostructures: Synthesis, Characterization, and Applications", Adv. Mater., 15 [5] 353-89 (2003). 

  13. A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, and N. M. Harrison, "Stability of Polar Oxide Surfaces", Phys. Rev. Lett., 86 3811-14 (2001). 

  14. J. I. Sohn, W. -K. Hong, S. Lee, S. Lee, J. Ku, Y. J. Park, J. Hong, S. Hwang, K. H. Park, J. H. Warner, S. Cha, and J. M. Kim, "Surface Energy-Mediated Construction of Anisotropic Semiconductor Wires with Selective Crystallographic Polarity", Scientific Reports, 4 5680 (2014). 

  15. M. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, "Room-Temperature Laser Emission of ZnO Nanowires Explained by Many-Body Theory", Phys. Rev. Lett., 108 [15] 157402 (2012). 

  16. Y. Dai, Y. Zhang, Q. K. Li, and C. W. Nan, "Synthesis and optical properties of tetrapod-like zinc oxide nanorods", Chem. Phys. Lett., 358 [1-2] 83-6 (2002). 

  17. Z. Chen, Z. Shan, M. S. Cao, L. Lu, and S. X. Mao, "Zinc Oxide Nanotetrapods", Nanotechnology, 15 [3] 365 (2004). 

  18. Z. W. Pan, Z. R. Dai, and Z. L. Wang, "Nanobelts of Semiconducting Oxides", Science, 291 [9] 1947-49 (2001). 

  19. Z. R. Dai, Z. W. Pan, and Z. L. Wang, "Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation", Adv. Funct. Mater., 13 [1] 9-24 (2003). 

  20. X. Y. Kong, and Z. L. Wang, "Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts", Nano Lett., 3 [12] 1625-31 (2003). 

  21. X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, "Single-Crystal Nanorings Formed by Epitaxial Self- Coiling of Polar Nanobelts", Science, 303 [27] 1348-51 (2004). 

  22. J. -H. Choy, E. -S. Jang, J. -H. Won, J. -H. Chung, D. -J. Jang, and Y. -W. Kim, "Soft Solution Route to Directionally Grown ZnO Nanorod Arrays on Si Wafer; Room-Temperature Ultraviolet Laser", Adv. Mater., 15 [22] 1911-14 (2003). 

  23. E. -S. Jang, X. Chen, J. -H. Won, J. -H. Chung, D. -J. Jang, Y. -W. Kim, and J. -H. Choy, "Soft- Solution Route to ZnO Nanowall Array with Low Threshold Power Density", Appl. Phys. Lett., 97 043109 (2010). 

  24. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, and M. J. Mcdermott, "Biomimetic Arrays of Oriented Helical ZnO Nanorods and Columns", J. Am. Chem. Soc., 124 12954-55 (2002). 

  25. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-Gallery Mode Microdisk Lasers", Appl. Phys. Lett., 60 [3] 289-91 (1992). 

  26. R. G. Nazmitdinov, K. N. Pichugin, I. Rotter, and P. Seba, Phys. Rev. E, 64 056214 (2001). 

  27. A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, "Room-Temperature Continuous-Wave Lasing in GaN/InGaN Microdisks", Nature Photonics, 1 61-64 (2007). 

  28. C. Kim, Y. -J. Kim, E. -S. Jang, G. -C. Yi, and H. H. Kim, "Whispering-Gallery-Modelike-Enhanced Emission from ZnO Nanodisk", Appl. Phys. Lett., 88 093104 (2006). 

  29. W. Li, S. Gao, L. Li, S. Jiao, Q. Yu, H. Li, J. Wang, Q. Yu, Y. Zhang, and D. Wang, "A Facile Solution Synthesis of ZnO Nanoplates on Al Substrate at Room Temperature", Mater. Lett., 185 161-64 (2016). 

  30. P. W. Tasker, "The Stability of Ionic Crystal Surfaces", J. Phys. C: Solid State Phys., 12 4977-84 (1979). 

  31. O. Dulub, U. Kiebold, and G. Kresse, "Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn", Phys. Rev. Lett., 90 [1] 016102 (2003). 

  32. V. Staemmler, K. Fink, B. Meyer, D. Marx, M. Kunat, S. G. Girol, U. Burghaus, and C. Woll, "Stabilization of Polar ZnO Surfaces: Validating Microscopic Models by Using CO as a Probe Molecule", Phys. Rev. Lett., 90 [10] 106102 (2003). 

  33. E.-S. Jang, J.-H. Won, S.-J. Hwang, and J.-H. Choy, "Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity", Adv. Mater., 18 3309-12 (2006). 

  34. E.-S. Jang, J.-H. Won, Y.-W. Kim, Z. Cheng, and J.-H. Choy, "Dynamic Transition between Zn-HDS and ZnO; Growth and Dissolving Mechanism of Dumbbell-like ZnO Bipod Crystal", CrystEngComm, 13 546-52 (2011). 

  35. J. H. Zeng, B. B. Jin, and Y. F. Wang, "Facet Enhanced Photocatalytic Effect with Uniform Single- Crystalline Zinc Oxide Nanodisks", Chem. Phys. Lett., 472 90-95 (2009). 

  36. R. Boppella, K. Anjaneyulu, P. Basak, and S. V. Manorama, "Facile Synthesis of Face Oriented ZnO Crystals: Tunable Polar Facets and Shape Induced Enhanced Photocatalytic Performance", J. Phys. Chem. C, 117 4597-4605 (2013). 

  37. M. Huang, Y. Yan, W. Feng, S. Weng, Z. Zheng, X. Fu, and P. Liu, "Controllable Tuning Various Ratios of ZnO Polar Facets by Crystal Seed-Assisted Growth and Their Photocatalytic Activity", Cryst. Grwoth Des., 14 2179-86 (2014). 

  38. G. Tang, S. Tian, Z. Zhou, Y. Wen, A. Pang, Y. Zhang, D. Zeng, H. Li, B. Shan, and C. Xie, "ZnO Micro/Nanocrystals with Tunable Exposed (0001) Facets for Enhanced Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate", J. Phys. Chem. C, 118 11833-41 (2014). 

  39. Y. Chen, H. Zhao, B. Liu, and H. Yang, "Charge Separation between Wurtzite ZnO Polar {0001} Surfaces and Their Enhanced Photocatalytic Activity", Appl. Catalysis B: Environmental, 163 189-97 (2015). 

  40. Y. Zhang, C. Liu, F. Gong, B. Jiu, and F. Li, "Large Scale Synthesis of Hexagonal Simonkolleit Nanosheets for ZnO Gas Sensors with Enhanced Performances", Mater. Lett., 186 7-11 (2017). 

  41. E. D. Brown, and G. D. Wright, "New Targets and Screening Approaches in Antimicrobial Drug Discovery", Chem. Rev., 105 759-74 (2005). 

  42. H.-J. Yang, H.-J. Kim, J. Yu, E. Lee, Y.-H. Jung, H.-Y. Kim, J.-H. Seo, G.-Y. Kwon, J.-H. Park, J. Gwack, S.-K. Youn, J.-W. Kwon, B.-Y. Jun, K. W. Kim, K. Ahn, S.-Y. Lee, J.-D. Park, J. -W. Kwon, B.-J. Kim, M.-S. Lee, K.-H. Do, S. -J. Jang, B.-Y. Pyun, and S. J. Hong, "Inhalation Toxicity of Humidifier Disinfectants as a Risk Factor of Children's Interstitial Lung Disease in Korea: A Case-Control Study", PLOS ONE, 8 [6] e64430 (2013). 

  43. H. R. Kim, K. Lee, C. W. Park, J. A. Song, D. Y. Shin, Y. J. Park, and K. H. Chung, "Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses", Archives of Toxicology, 90 [3] 617-32 (2016). 

  44. R. Brayner, R. F-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, and G. Fievet, "Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium", Nano Lett., 6 [4] 866-70 (2006). 

  45. G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, and A. Gedanken, "Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS-Mediated Cell Injury" Adv. Funct. Mater., 19 [6] 842-52 (2009). 

  46. K. Ali, S. Dwivedi, A. Azam, Q. Saquib, M. S. Al-Said, A. A. Alkhedhairy, and J. Musarrat, "Aloe Vera Extract Functionalized Zinc Oxide Nanoparticles as Nanoantibiotics Against Multi-Drug Resistant Clinical Bacterial Isolates", J Colloid Interface Sci., 472 [15] 145-56 (2016). 

  47. S. Dwivedi, R. Wahab, F. Khan, Y. K. Mishra, J. Musarrat, and A. A. Al-Khedhairy, "Reactive Oxygen Species Mediated Bacterial Biofilm Inhibition via Zinc Oxide Nanoparticles and Their Statistical Determination", PLOS ONE, 9 e111289 (2014). 

  48. A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, S. S. Habib, and A. Memic, "Antimicrobial Activity of Metal Oxide Nanoparticles against Gram-Positive and Gram-Negative Bacteria: a Comparative Study", Int. J. Nanomed., 7 6003-09 (2012). 

  49. S. A. Ansari, Q. Husain, S. Qayyum, and A. Azam, "Designing and Surface Modification of Zinc Oxide Nanoparticles for Biomedical Applications", Food & Chem. Toxicology, 49 [9] 2107-15 (2011). 

  50. M. A. Ansari, H. M. Khan, A. A. Khan, A. Sultan, and A. Azam, "Synthesis and Characterization of the Antibacterial Potential of ZnO Nanoparticles against Extended- Spectrum ${\beta}$ -Lactamases-Producing Escherichia coli and Klebsiella pneumoniae Isolated from a Tertiary Care Hospital of North India", Appl. Microbiol & Biotech., 94 [2] 467-77 (2012). 

  51. Y. Li, W. Zhang, J. Niu, and Y. Chen, "Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles", ACS Nano, 6 [6] 5164-73 (2012). 

  52. N. Padmavathy, and R. Vijayaraghavan, "Enhanced Bioactivity of ZnO Nanoparticles-an Antimicrobial Study", Sci. Technol. Adv. Mater., 9 [3] 035004 (2008). 

  53. A. B. Djurisic, Y. H. Leung, A. M. C. Ng, X. Y. Xu, P. K. H. Lee, N. Degger, and R. S. S. Wu, "Toxicity of Metal Oxide Nanoparticles: Mechanisms, Characterization, and Avoiding Experimental Artefacts", Small, 11 [1] 26-44 (2015). 

  54. M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. J. D. Aberasturi, I. R. D. Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, "Antibacterial Properties of Nanoparticles", Trends Biotech., 30 [10] 499-511 (2012). 

  55. K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, and H. Sugimoto, "Preparation of Zinc Oxide Ceramics with a Sustainable Antibacterial Activity under Dark conditions", Ceramics Inter., 36 [2] 497-506 (2010). 

  56. X. Xu, D. Chen, Z. Yi, M. Jiang, L. Wang, Z. Zhou, X. Fan, Y. Wang, and D. Hui, "Antimicrobial Mechanism Based on $H_2O_2$ Generation at Oxygen Vacancies in ZnO Crystals", Langmuir, 29 [18] 5573- 80 (2013). 

  57. V. L. Prasanna, and R. Vijayaraghavan, "Insight into the Mechanism of Antibacterial Activity of ZnO: Surface Defects Mediated Reactive Oxygen Species Even in the Dark", Langmuir, 31 [33] 9155-9162 (2015). 

  58. M. Li, L. Zhu, and D. Lin, "Toxicity of ZnO Nanoparticles to Escherichia coli: Mechanism and the Influence of Medium Components", Environ. Sci. Technol., 45 [5] 1977-83 (2011). 

  59. Y. W. Wang, A. Cao, Y. Jiang, X. Zhang, J. H. Liu, Y. Liu, and H. Wang, "Superior Antibacterial Activity of Zinc Oxide/Graphene Oxide Composites Originating from High Zinc Concentration Localized around Bacteria", ACS Appl. Mater. Interfaces, 6 [4] 2791-98 (2014). 

  60. K. R. Raghupathi, R. T. Koodali, and A. C. Manna, "Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles", Langmuir, 27 [7] 4020-4028 (2011). 

  61. K. H. Tam, A. B. Djuri?i?, C. M. N. Chan, Y. Y. Xi, C. W. Tse, Y. H. Leung, W. K. Chan, F. C. C. Leung, and D. W. T. Au, "Antibacterial Activity of ZnO Nanorods Prepared by a Hydrothermal Method", Thin Solid Films, 516 [18] 6167-74 (2008). 

  62. Y. Liu, L. He, A. Mustapha, H. Li, Z. Q. Hu, and M. Lin, "Antibacterial Activities of Zinc Oxide Nanoparticles against Escherichia coli O157:H7", J. Appl. Microbiology, 107 [4] 1193-1201 (2009). 

  63. A. Joe, S.-H. Park, K.-D. Shim, D.-J. Kim, K. -H. Jhee, H.-W. Lee, C.-H. Heo, H.-M. Kim, and E.-S. Jang, "Antibacterial Mechanism of ZnO Nanoparticles under Dark conditions", J. Ind. & Eng. Chem., 45 430-39 (2017). 

  64. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, H. K. A Cho, "A Comparative Analysis of Deep Level Emission in ZnO Layers Deposited by Various Methods", J. Appl. Phys., 105 013502 (2009). 

  65. L. Spanhel, and M. A. Anderson, "Semiconductor Clusters in the Sol-Gel Process: Quantized Aggregation, Gelation, and Crystal Growth in Concentrated Zinc Oxide Colloids", J. Am. Chem. Soc., 113 [8] 2826-33 (1991). 

  66. P. S. Hale, L. M. Maddox, J. G. Shapter, N. H. Voelcker, M. J. Ford, and E. R. Waclawik, "Growth Kinetics and Modeling of ZnO Nanoparticles", J. Chem. Edu., 82 [5] 775-78 (2005). 

  67. D.-J. Kim, B.-M. Kim, A. Joe, K.-D. Shim, H. -W. Han, G.-H. Noh, and E.-S. Jang, "Large- Scale Synthesis of Plate-Type ZnO Crystal with High Photocatalytic Activity", J. Kor. Chem. Soc., 59 [2] 148-55 (2015). 

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로