$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

MC3T3-E1 세포에서 BMP2에 의한 조골세포의 분화에 일주기 유전자 Per1이 미치는 영향
Circadian Clock Gene Per1 Mediates BMP2-induced Osteoblast Differentiation in MC3T3-E1 Cells 원문보기

생명과학회지 = Journal of life science, v.27 no.5 = no.205, 2017년, pp.501 - 508  

민현영 (대구대학교 생명공학과) ,  장원구 (대구대학교 생명공학과)

초록
AI-Helper 아이콘AI-Helper

Bone morphogenetic proteins (BMPs)는 다양한 세포기능을 조절하는 중요한 사이토카인 중 하나이다. 최근 BMP와 일주기 유전자들이 연관되어 있다는 연구결과들이 보고되고 있지만 조골세포에서 일주기 유전자인 Per1의 역할은 아직 명확하지 않다. 본 연구에서는 조골세포 분화에서 Per1의 역할을 조사하였다. MC3T3-E1 세포에서 BMP2 처리에 의해 Per1 mRNA 발현과 luciferase 활성이 증가하는 것을 확인하였다. 또한 Per1 과발현 실험을 통해서 Per1 유전자가 Runx2, ALP, OC의 발현을 증가시켰으며 ascorbic acid와 ${\beta}$-glycerophosphate에 의한 ALP 염색과 석회화가 Per1 과발현에 의해 더욱 증가하는 것을 확인하였다. 이상의 결과는 일주기 리듬을 조절하는 Per1 유전자가 조골세포의 분화를 촉진하는 인자로 작용함을 시사한다.

Abstract AI-Helper 아이콘AI-Helper

Bone morphogenetic proteins (BMPs) are multifunctional cytokines that play important roles in a variety of cellular functions. Among BMP family members, BMP2 efficiently promotes osteoblast differentiation through Smad-mediated runt-related transcription factor 2 (Runx2) expression. Several recent s...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 일주기리듬이 골 대사를 조절한다고 알려져 있지만 자세한 분자적 기전에 대한 연구는 아직 부족한 실정이다[3, 14]. 따라서 본 연구에서는 생체주기에 있어 중요한 역할을 하는 Per1 유전자가 조골세포의 분화에 어떠한 영향을 미치는지 확인하고자 조골모세포 MC3T3-E1 세포에서 BMP2에 의한 Per1 유전자의 발현양상을 조사하였으며 Per1 유전자 과발현에 의한 영향을 분석하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
Bone morphogenetic proteins는 어떤 기능을 조절하는가? Bone morphogenetic proteins (BMPs)는 다양한 세포기능을 조절하는 중요한 사이토카인 중 하나이다. 최근 BMP와 일주기 유전자들이 연관되어 있다는 연구결과들이 보고되고 있지만 조골세포에서 일주기 유전자인 Per1의 역할은 아직 명확하지 않다.
증가된 distal-less homeobox 5는 무엇을 유도하는가? 조골세포(osteoblasts) 분화 과정에서 BMP2는 BMP수용체와 결합한 후, Smad1/5/8의 인산화를 유도하여 활성화시키고 Smad4와 결합된 복합체는 전사활성 인자로 작용하여 distal-less homeobox 5 (Dlx5)의 발현을 촉진한다. 증가된 Dlx5는 조골세포의 분화에 있어 핵심 전사 인자로 작용하는 Runx2의 발현을 유도한다[19, 20]. Runx2는 osteocalcin (OC), osteopontin, collagen typeⅠ과 같은 조골세포 분화 마커 유전자의 promoter에 결합하고 이러한 유전자들의 발현을 증가시킴으로써 조골세포의 분화를 촉진한다[17].
골 형성 및 분해 대사는 무엇에 의해 조절되는가? 골 형성 및 분해 대사는 다양한 호르몬, 사이토카인(cytokine)과 여러 전사 인자(transcription factor)에 의해 조절된다. Bone morphogenetic proteins (BMPs)는 배아발생, 세포의 성장과 분화부터 뼈의 성장과 골절의 회복과정까지 다양한 세포의 기능에서 중요한 역할을 하는 사이토카인이다[11, 22, 26].
질의응답 정보가 도움이 되었나요?

참고문헌 (38)

  1. Albrecht, U., Sun, Z. S., Eichele, G. and Lee, C. C. 1997. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91, 1055-1064. 

  2. Bellows, C. G., Aubin, J. E. and Heersche, J. N. 1991. Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner. 14, 27-40. 

  3. Bjarnason, G. A. and Jordan, R. 2000. Circadian variation of cell proliferation and cell cycle protein expression in man: clinical implications. Prog. Cell Cycle Res. 4, 193-206. 

  4. Borba, V. Z. and Manas, N. C. 2010. The use of PTH in the treatment of osteoporosis. Arq. Bras. Endocrinol. Metabol. 54, 213-219. 

  5. Dibner, C., Schibler, U. and Albrecht, U. 2010. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517-549. 

  6. Gallagher, J. C. and Sai, A. J. 2010. Molecular biology of bone remodeling: implications for new therapeutic targets for osteoporosis. Maturitas 65, 301-307. 

  7. Grimaldi, B., Bellet, M. M., Katada, S., Astarita, G., Hirayama, J., Amin, R. H., Granneman, J. G., Piomelli, D., Leff, T. and Sassone-Corsi, P. 2010. PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab. 12, 509-520. 

  8. Hanyu, R., Hayata, T., Nagao, M., Saita, Y., Hemmi, H., Notomi, T., Nakamoto, T., Schipani, E., Knonenbery, H., Kaneko, K., Kurosawa, H., Ezura, Y. and Noda, M. 2011. Per-1 is a specific clock gene regulated by parathyroid hormone (PTH) signaling in osteoblasts and is functional for the transcriptional events induced by PTH. J. Cell Biochem. 112, 433-438. 

  9. Hinoi, E., Ueshima, T., Hojo, H., Iemata, M., Takarada, T. and Yoneda, Y. 2006. Up-regulation of per mRNA expression by parathyroid hormone through a protein kinase A-CREB-dependent mechanism in chondrocytes. J. Biol. Chem. 281, 23632-23642. 

  10. Hirai, T., Tanaka, K. and Togari, A. 2014. alpha1-adrenergic receptor signaling in osteoblasts regulates clock genes and bone morphogenetic protein 4 expression through up-regulation of the transcriptional factor nuclear factor IL-3 (Nfil3)/E4 promoter-binding protein 4 (E4BP4). J. Biol. Chem. 289, 17174-17183. 

  11. Hogan, B. L. 1996. Bone morphogenetic proteins in development. Curr. Opin. Genet. Dev. 6, 432-438. 

  12. Hogan, B. L. 1996. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580-1594. 

  13. Iida-Klein, A., Zhou, H., Lu, S. S., Levine, L. R., Ducayen- Knowles, M., Dempster, D. W., Nieves, J. and Lindsay, R. 2002. Anabolic action of parathyroid hormone is skeletal site specific at the tissue and cellular levels in mice. J. Bone Miner. Res. 17, 808-816. 

  14. Kawai, M. and Rosen, C. J. 2010. PPARgamma: a circadian transcription factor in adipogenesis and osteogenesis. Nat. Rev. Endocrinol. 6, 629-636. 

  15. Kim, E. J., Yoon, Y. S., Hong, S., Son, H. Y., Na, T. Y., Lee, M. H., Kang, H. J., Park, J., Cho, W. J., Kim, S. G., Koo, S. H., Park, H. G. and Lee, M. O. 2012. Retinoic acid receptor- related orphan receptor alpha-induced activation of adenosine monophosphate-activated protein kinase results in attenuation of hepatic steatosis. Hepatology 55, 1379-1388. 

  16. Ko, C. H. and Takahashi, J. S. 2006. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15 Spec No 2, R271-277. 

  17. Komori, T. 2005. Regulation of skeletal development by the Runx family of transcription factors. J. Cell Biochem. 95, 445-453. 

  18. Lamia, K. A., Storch, K. F. and Weitz, C. J. 2008. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. USA 105, 15172-15177. 

  19. Lee, M. H., Kim, Y. J., Kim, H. J., Park, H. D., Kang, A. R., Kyung, H. M., Sung, J. H., Wozney, J. M., Kim, H. J. and Ryoo, H. M. 2003. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J. Biol. Chem. 278, 34387-34394. 

  20. Lee, M. H., Kim, Y. J., Yoon, W. J., Kim, J. I., Kim, B. G., Hwang, Y. S., Wozney, J. M., Chi, X. Z., Bae, S. C., Choi, K. Y., Cho, J. Y., Choi, J. Y. and Ryoo, H. M. 2005. Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J. Biol. Chem. 280, 35579-35587. 

  21. Marcheva, B., Ramsey, K. M., Buhr, E. D., Kobayashi, Y., Su, H., Ko, C. H., Ivanova, G., Omura, C., Mo, S., Vitaterna, M. H., Lopez, J. P., Philipson, L. H., Bradfield, C. A., Crosby, S. D., JeBailey, L., Wang, X., Takahashi, J. S. and Bass, J. 2010. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627-631. 

  22. Massague, J. 1998. TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753-791. 

  23. Min, H. Y., Kim, K. M., Wee, G., Kim, E. J. and Jang, W. G. 2016. Bmal1 induces osteoblast differentiation via regulation of BMP2 expression in MC3T3-E1 cells. Life Sci. 162, 41-46. 

  24. Reppert, S. M. and Weaver, D. R. 2001. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647-676. 

  25. Rudic, R. D., McNamara, P., Curtis, A. M., Boston, R. C., Panda, S., Hogenesch, J. B. and Fitzgerald, G. A. 2004. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2, e377. 

  26. Schmitt, J. M., Hwang, K., Winn, S. R. and Hollinger, J. O. 1999. Bone morphogenetic proteins: an update on basic biology and clinical relevance. J. Orthop. Res. 17, 269-278. 

  27. Shearman, L. P., Zylka, M. J., Weaver, D. R., Kolakowski, L. F. Jr. and Reppert, S. M. 1997. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19, 1261-1269. 

  28. Shimba, S., Ogawa, T., Hitosugi, S., Ichihashi, Y., Nakadaira, Y., Kobayashi, M., Tezuka, M., Kosuge, Y., Ishige, K., Ito, Y., Komiyama, K., Okamatsu-Ogura, Y., Kimura, K. and Saito, M. 2011. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS One 6, e25231. 

  29. Sun, Z. S., Albrecht, U., Zhuchenko, O., Bailey, J., Eichele, G. and Lee, C. C. 1997. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90, 1003-1011. 

  30. Takahashi, J. S., Hong, H. K., Ko, C. H. and McDearmon, E. L. 2008. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9, 764-775. 

  31. Takumi, T., Taguchi, K., Miyake, S., Sakakida, Y., Takashima, N., Matsubara, C., Maebayashi, Y., Okumura, K., Takekida, S., Yamamoto, S., Yagita, K., Yan, L., Young, M. W. and Okamura, H. 1998. A light-independent oscillatory gene mPer3 in mouse SCN and OVLT. EMBO J. 17, 4753-4759. 

  32. Tasaki, H., Zhao, L., Isayama, K., Chen, H., Yamauchi, N., Shigeyoshi, Y., Hashimoto, S. and Hattori, M. A. 2015. Inhibitory role of REV-ERBalpha in the expression of bone morphogenetic protein gene family in rat uterus endometrium stromal cells. Am. J. Physiol. Cell Physiol. 308, C528-538. 

  33. Tei, H., Okamura, H., Shigeyoshi, Y., Fukuhara, C., Ozawa, R., Hirose, M. and Sakaki, Y. 1997. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389, 512-516. 

  34. Trivedi, R., Goswami, R. and Chattopadhyay, N. 2010. Investigational anabolic therapies for osteoporosis. Expert Opin. Investig. Drugs 19, 995-1005. 

  35. Tsukamoto-Yamauchi, N., Terasaka, T., Iwasaki, Y. and Otsuka, F. 2015. Interaction of pituitary hormones and expression of clock genes modulated by bone morphogenetic protein-4 and melatonin. Biochem. Biophys. Res. Commun. 459, 172-177. 

  36. Turek, F. W., Joshu, C., Kohsaka, A., Lin, E., Ivanova, G., McDearmon, E., Laposky, A., Losee-Olson, S., Easton, A., Jensen, D. R., Eckel, R. H., Takahashi, J. S. and Bass, J. 2005. Obesity and metabolic syndrome in circadian clock mutant mice. Science 308, 1043-1045. 

  37. Wu, M., Deng, L., Zhu, G. and Li, Y. P. 2010. G Protein and its signaling pathway in bone development and disease. Front. Biosci. (Landmark Ed) 15, 957-985. 

  38. Zylka, M. J., Shearman, L. P., Weaver, D. R. and Reppert, S. M. 1998. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20, 1103-1110. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로