$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A Rapid and Efficient Screening Method for Antibacterial Compound-Producing Bacteria 원문보기

Journal of microbiology and biotechnology, v.27 no.8, 2017년, pp.1441 - 1448  

Hettiarachchi, Sachithra Amarin (Korea Institute of Ocean Science & Technology) ,  Lee, Su-Jin (Korea Institute of Ocean Science & Technology) ,  Lee, Youngdeuk (Korea Institute of Ocean Science & Technology) ,  Kwon, Young-Kyung (Korea Institute of Ocean Science & Technology) ,  Zoysa, Mahanama De (College of Veterinary Medicine, Chungnam National University) ,  Moon, Song (Korea Institute of Ocean Science & Technology) ,  Jo, Eunyoung (Korea Institute of Ocean Science & Technology) ,  Kim, Taeho (Korea Institute of Ocean Science & Technology) ,  Kang, Do-Hyung (Korea Institute of Ocean Science & Technology) ,  Heo, Soo-Jin (Korea Institute of Ocean Science & Technology) ,  Oh, Chulhong (Korea Institute of Ocean Science & Technology)

Abstract AI-Helper 아이콘AI-Helper

Antibacterial compounds are widely used in the treatment of human and animal diseases. The overuse of antibiotics has led to a rapid rise in the prevalence of drug-resistant bacteria, making the development of new antibacterial compounds essential. This study focused on developing a fast and easy me...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • All target marine bacteria were randomly selected for the experiment. They belong to five genera (Agrococcus, Bacillus, Mesoflavibacter, Pseudoalteromonas, and Zunongwangia) and some of them have shown bactericidal effects in previous studies.
  • In conclusion, this study was conducted to find an efficient method to screen antibacterial compound-producing marine bacteria. The colony picking method provides a fast, efficient, and inexpensive antibacterial compound-producing bacteria screening process.
  • The rapid spread of multidrug resistance in bacteria is leading to reemerging and newly emerging infectious diseases, creating an urgent need for new classes of antibiotics[4]. In this study, we tested two preliminary screening methods for the rapid identification of marine bacteria that produce antibacterial compounds.

대상 데이터

  • All strains of marine bacteria (Table 1) used in this study were from stocks maintained at Jeju International Ocean Science Center for Research & Education (Korea Institute of Ocean Science & Technology, Korea).
  • In particular, the gram negativity of marine bacteria has led them to thrive in harsh environments, resulting in ranges of structurally diversified secondary metabolites [16]. Bacillus cereus, Bacillus subtilis, Halomonas smyrnensis, and Vibrio alginolyticus were used as test bacteria. B.
  • Strains used for this study were cultured on marine agar (Becton Dickinson Company, USA) and in marine broth (Becton Dickinson Company) at 30°C. Eight strains of test bacteria and four of target bacteria were used in this study.

이론/모형

  • 45 µm disposable membrane filter unit. Both samples were used for the antagonistic activity test by disk diffusion assay.
본문요약 정보가 도움이 되었나요?

참고문헌 (42)

  1. Newman D J, C ragg GM. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75: 311-335. 

  2. Zhu F, Qin C, Tao L, Liu X, Shi Z, Ma X, et al. 2011. Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc. Natl. Acad. Sci. USA 108: 12943-12948. 

  3. Austin B. 1989. Novel pharmaceutical compounds from marine bacteria. J. Appl. Bacteriol. 67: 461-470. 

  4. Darabpour E, Roayaei AM, Motamedi H, Ronagh M. 2011. Isolation of a broad spectrum antibiotic producer bacterium, Pseudoalteromonas piscicida PG-02, from the Persian Gulf. Bangladesh J. Pharmacol. 6: 74-83. 

  5. Jensen P, Fenical W. 1996. Marine bacterial diversity as a resource for novel microbial products. J. Ind. Microbiol. Biotechnol. 17: 346-351. 

  6. Vigneshwari R, Sally RA, Jayapradha R. 2015. Cocultivation-powerful tool for the production of secondary metabolites. J. Chem. Pharm. Res. 7: 481-485. 

  7. Valgas C, Souza S, Smania E, Smania JA. 2007. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38: 369-380. 

  8. Balouiri M, Sadiki M, Ibnsouda S. 2016. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6: 71-79. 

  9. Pikkemaat M. 2009. Microbial screening methods for detection of antibiotic residues in slaughter animals. Anal. Bioanal. Chem. 395: 893-905. 

  10. Zhang J, Liu X, Liu S. 2009. Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil. Int. J. Syst. Evol. Microbiol. 60: 1897-1903. 

  11. Ivanova E, Alexeeva Y, Zhukova N, Gorshkova N, Buljan V, Nicolau D, et al. 2004. Bacillus algicola sp. nov., a novel filamentous organism isolated from brown alga Fucus evanescens. Syst. Appl. Microbiol. 27: 301-307. 

  12. Asker D, Beppu T, Ueda K. 2007. Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. Syst. Appl. Microbiol. 30: 291-296. 

  13. Romanenko L. 2003. Pseudoalteromonas agarivorans sp. nov., a novel marine agarolytic bacterium. Int. J. Syst. Evol. Microbiol. 53: 125-131. 

  14. Shao R, Lai Q, Liu X, Sun F, Du Y, Li G, et al. 2013. Zunongwangia atlantica sp. nov., isolated from deep-sea water. Int. J. Syst. Evol. Microbiol. 64: 16-20. 

  15. Bernbom N, Ng Y, Olsen S, Gram L. 2013. Pseudoalteromonas spp. serve as initial bacterial attractants in mesocosms of coastal waters but have subsequent antifouling capacity in mesocosms and when embedded in paint. Appl. Environ. Microbiol. 79: 6885-6893. 

  16. Anwar M, Choi S. 2014. Gram-negative marine bacteria: structural features of lipopolysaccharides and their relevance for economically important diseases. Mar. Drugs 12: 2485-2514. 

  17. Jung M, Kim J, Paek W, Lim J, Lee H, Kim P, et al. 2011. Bacillus manliponensis sp. nov., a new member of the Bacillus cereus group isolated from foreshore tidal flat sediment. J. Microbiol. 49: 1027-1032. 

  18. Roberts M, Nakamura L, Cohan F. 1996. Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis, isolated from soil in Death Valley, California. Int. J. Syst. Evol. Microbiol. 46: 470-475. 

  19. Poli A, Nicolaus B, Denizci A, Yavuzturk B, Kazan D. 2012. Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 63: 10-18. 

  20. Kaneko M, Iwashita M. 1987. Antimicrobial susceptibility of Vibrio parahaemolyticus and Vibrio alginolyticus isolated from human feces and foods. Kansenshogaku Zasshi 61: 9-16. 

  21. Bottone E. 2010. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23: 382-398. 

  22. Ushakova N, Nekrasov R, Meleshko N, Laptev G, Il'ina L, Kozlova A, et al. 2013. Effect of Bacillus subtilis on the rumen microbial community and its components exhibiting high correlation coefficients with the host nutrition, growth, and development. Microbiology 82: 475-481. 

  23. Stevens D, Hamilton J, Johnson N, Kim K, Lee J. 2009. Halomonas, a newly recognized human pathogen causing infections and contamination in a dialysis center. Medicine 88: 244-249. 

  24. Hubalek Z. 2003. Protectants used in the cryopreservation of microorganisms. Cryobiology 46: 205-229. 

  25. Clinical and Laboratory Standards Institute (CLSI). 2015. Performance standard for antimicrobial susceptibility testing; twenty-second informational supplement, pp. 146-156. Clinical and Laboratory Standards Institute, Wayne, PA, USA. 

  26. Shank EA, Kolter R. 2009. New developments in microbial interspecies signaling. Curr. Opin. Microbiol. 12: 205-214. 

  27. Armstrong E, Yan L, Boyd K, Wright P, Burgess J. 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461: 37-40. 

  28. Sanchez J, Kouznetsov V. 2010. Antimycobacterial susceptibility testing methods for natural products research. Braz. J. Microbiol. 41: 270-277 

  29. Pauli G, Case R, Inui T, Wang Y, Cho S, Fischer N, et al. 2005. New perspectives on natural products in TB drug research. Life Sci. 78: 485-494. 

  30. Balouiri M, Sadiki M, Ibnsouda S. 2016. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6: 71-79. 

  31. Gibb A. 1999. Plates are better than broth for recovery of fastidious organisms from some specimen material. J. Clin. Microbiol. 37: 875. 

  32. Dheilly A, Soum-Soutera E, Klein G, Bazire A, Compere C, Haras D, et al. 2010. Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3J6. Appl. Environ. Microbiol. 76: 3452-3461. 

  33. Wilson G, Raftos D, Nair S. 2011. Antimicrobial activity of surface attached marine bacteria in biofilms. Microbiol. Res. 166: 437-448. 

  34. Goers L, Freemont P, Polizzi K. 2014. Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface 11: 20140065. 

  35. Fukuda T, Tsutsumi K, Morita H. 2008. Antibiotic activity in co-culture: influence of Bacillus subtilis on the antibiotic activity of Rhizopus peka. Japan J. Food Eng. 9: 99-106. 

  36. Dopazo C, Lemos M, Lodeiros C, Bolinches J, Barja J, Toranzo A. 1988. Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. J. Appl. Bacteriol. 65: 97-101. 

  37. Yu M, Wang J, Tang K, Shi X, Wang S, Zhu W, Zhang X. 2011. Purification and characterization of antibacterial compounds of Pseudoalteromonas flavipulchra JG1. Microbiology 158: 835-842. 

  38. Gauthier G, Gauthier M, Christen R. 1995. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (Emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol. 45: 755-761. 

  39. Bowman J. 2007. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar. Drugs 5: 220-241. 

  40. Jin G, Wang S, Yu M, Yan S, Zhang X. 2010. Identification of a marine antagonistic strain JG1 and establishment of a polymerase chain reaction detection technique based on the gyrB gene. Aquac. Res. 41: 1867-1874. 

  41. Hayashida-Soiza G, Uchida A, Mori N, Kuwahara Y, Ishida Y. 2008. Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strain. J. Appl. Microbiol. 105: 1672-1677. 

  42. Offret C, Desriac F, Le Chevalier P, Mounier J, Jegou C, Fleury Y. 2016. Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: chemodiversity and ecological significance. Mar. Drugs 14: 129. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로