$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Artificial induction and isolation of cadmium-tolerant soil bacteria 원문보기

Journal of applied biological chemistry, v.63 no.2, 2020년, pp.125 - 129  

Lee, Sangman (Division of Applied Biology and Chemistry, School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)

Abstract AI-Helper 아이콘AI-Helper

Environmental pollution caused by various heavy metals is a serious global problem. To solve this problem, microbial bioremediation of contaminated metals has developed rapidly as an effective strategy when physical and chemical techniques are not suitable. In this study, cadmium (Cd)-tolerant soil ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Thus, the long-exposure of microorganisms to heavy metals in artificial conditions can induce metal tolerance by inducing mutations during the adaptation process. Therefore, this study focused on the artificial generation of bacterial mutants that have a strong tolerance to Cd, a representative non-essential heavy metal, using the sequential adaptation of bacteria to gradually increases in Cd stress.

대상 데이터

  • A soil sample was collected from a rose garden at Kyungpook National University, Korea. Approximately 5 g soil was mixed with 10 mL Luria-Bertani (LB) medium, and 100 µL of the supernatant was inoculated in 5 mL LB medium.
  • 8% (w/v) agarose gel electrophoresis and purified using a Gel Extraction Kit (Invitrogen, Carlsbad, CA, USA). The purified DNA fragments were sent to Solgent (Daejeon, Korea) for sequencing.
  • The universal primers 27F (5'-AGA GTT TGA TCC TGG CTC AG-3') and 1492R (5'-GGC TAC CTT GTT ACG ACT T-3') were used.

데이터처리

  • A one-way analysis of variance (ANOVA) was carried out to measure significant differences among the groups at the significant level of 5%, p <0.05 using a SPSS program with a 23.0 version.
본문요약 정보가 도움이 되었나요?

참고문헌 (25)

  1. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metalsconcepts and applications. Chemosphere 91: 869-881 

  2. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011: 1-20 

  3. Bai HJ, Zhang ZM, Yang GE, Li BZ (2008) Bioremediation of cadmium by growing Rhodobacter sphaeroides: Kinetic characteristic and mechanism studies. Bioresource Technol 99: 7716-7722 

  4. Gad AS, Attia M, Ahmed HA (2010) Heavy metals bio-remediation by immobilized Saccharomyces cerevisiae and Opuntia ficus indica waste. J American Sci 6: 79-87 

  5. Soares EV, Soares HM (2012) Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environ Sci Pollut Res Int 19: 1066-1083 

  6. Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Processes Impacts 16: 180-193 

  7. Srivastava J, Naraian R, Kalra SJS, Chandra H (2014) Advance in microbial bioremediation and the factors influencing the process. Inl J Environ Sci Tech 11: 1787-1800 

  8. Tsekova K, Todorova D, Ganeva S (2010) Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. International Biodeterioration & Biodegradation 64: 447-451 

  9. El-Sayed MT (2012) The use of Saccharomyces cerevisiae for removing cadmium(II) from aqueous waste solutions. African J Microbiol Res 6: 6900-6910 

  10. Khan Z, Hussain SZ, Rehman A, Zulfiqar S, Shakoori AR (2015) Evaluation of cadmium resistant bacterium, Klebsiella Pneumoniae, isolated from industrial wastewater for its potential use to bioremediate environmental cadmium. Pakistan J Zool 47: 1533-1543 

  11. Yan G, Viraraghvan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37: 4486-4496 

  12. Pattanayak B, Mittra B, Dhal NK (2015) Cadmium bioremediation by metal - resistant mutated bacteria isolated from industrial effluent. Int J Pure App Biosci 3:296-303 

  13. Diaz-Ravina M, Baath E (2001) Response of bacterial communities preexposed to different metals and reinoculated in an unpolluted soil. Soil Biology Biochemistry 33: 241-248 

  14. Diaz-Ravina M, Baath E, Frostegard (1994) Multiple heavy metal tolerance of soil bacterial communities and its measurement by a thymidine incorporation technique. Appl Environ Microbiol 60: 2238-2247 

  15. Villegas LB, Amoroso MJ, deFigueroa LIC (2005) Copper tolerant yeasts isolated from polluted area of Argentina. J Basic Microbiol 45: 381-391 

  16. Zafar S, Aquil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology 98: 2557-2561 

  17. Jiang C, Sheng X, Qian M, Wang Q (2008) isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metalcontaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72: 157-164 

  18. Rehman A, Farooq H, Hasnain S (2008) Biosorption of copper by yeast, Loddermyces elongisporus, isolated from industrial effluents: its potential use in wastewater treatment. J Basic Microbiol 48: 195-201 

  19. Cooley RN, Helen R, Tomsett AB (1986) isolation and characterization of cadmium-resistant mutants. Curr Microbiol 13: 265-268 

  20. Yamada T, Furukawa K, Hara S, Mizoguchi H (2005) Isolation of copper-tolerant mutants of sake yeast with defective peptide uptake. J Biosci Bioeng 100: 460-465 

  21. Diaz-Ravina M, Baath E (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol 62: 2970-2977 

  22. Gin YH, Clark AB, Slebos RJ, Al-Rafai H, Taylor JA, Kundel TA, Resnick MA, Gordenin A (2003) Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat Gen 34: 326-329 

  23. Serero A, Lopes J, Nicolas A, Boiteux S (2008) Yeast genes involved in cadmium tolerance: Identification of DNA replication as a target of cadmium toxicity. DNA Repair 7: 1262-1275 

  24. Ruta L, Paraschivescu C, Matache M, Avramescu S, Farcassanu IC (2010) Removing heavy metals from synthetic effluents using "kamikaze" Saccharomyces cerevisiae cells. App Microbiol Biotechnol 85: 763-771 

  25. Lin X, Mou R, Cao Z, Xu P, Wu X, Zhu Z, Chen M (2016) Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains. Sci Total Environ 569-570: 97-104 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로