최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of microbiology and biotechnology, v.27 no.9, 2017년, pp.1670 - 1680
Oh, Han Na (Department of Systems Biotechnology, Chung-Ang University) , Lee, Tae Kwon (Department of Environmental Engineering, Yonsei University) , Park, Jae Wan (Department of Systems Biotechnology, Chung-Ang University) , No, Jee Hyun (Department of Environmental Engineering, Yonsei University) , Kim, Dockyu (Division of Life Sciences, Korea Polar Research Institute) , Sul, Woo Jun (Department of Systems Biotechnology, Chung-Ang University)
Lignocellulose, composed mostly of cellulose, hemicellulose, and lignin generated through secondary growth of woody plant, is considered as promising resources for biofuel. In order to use lignocellulose as a biofuel, biodegradation besides high-cost chemical treatments were applied, but knowledge o...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577.
Lee H, Hamid S, Zain S. 2014. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. ScientificWorldJournal. 2014: 631013.
Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804-807.
Gallezot P. 2012. Conversion of biomass to selected chemical products. Chem. Soc. Rev. 41: 1538-1558.
Kato DM, Elia N, Flythe M, Lynn BC. 2014. Pretreatment of lignocellulosic biomass using Fenton chemistry. Bioresour. Technol. 162: 273-278.
Iqbal HMN, Kyazze G, Keshavarz T. 2013. Advances in the valorization of lignocellulosic materials by biotechnology: an overview. BioResources 8: 3157-3176.
Mhuantong W, Charoensawan V, Kanokratana P, Tangphatsornruang S, Champreda V. 2015. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnol. Biofuels 8: 16.
Kanokratana P, Uengwetwanit T, Rattanachomsri U, Bunterngsook B, Nimchua T, Tangphatsornruang S, et al. 2011. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microb. Ecol. 61: 518-528.
Woo HL, Hazen TC, Simmons BA, DeAngelis KM. 2014. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Syst. Appl. Microbiol. 37: 60-67.
Aylward FO, Burnum KE, Scott JJ, Suen G, Tringe SG, Adams SM, et al. 2012. Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens. ISME J. 6: 1688-1701.
Scully ED, Geib SM, Hoover K, Tien M, Tringe SG, Barry KW, et al. 2013. Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS One 8: e73827.
Metzker ML. 2010. Sequencing technologies - the next generation. Nat. Rev. Genetics 11: 31-46.
Roberts RJ, Carneiro MO, Schatz MC. 2013. The advantages of SMRT sequencing. Genome Biol. 14: 405.
Qin W. 2016. Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms. Int. J. Biol. Sci. 12: 156.
Kim DS, Lee JH, Yang SH. 2010. Plant Community Dynamics, pp. 107-135.
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6: 1621-1624.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336.
Eren AM, Vineis JH, Morrison HG, Sogin ML. 2013. A filtering method to generate high quality short reads using Illumina paired-end technology. PLoS One 8: e66643.
Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461.
Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. 2009. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: D141-D145.
Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. 2010. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26: 266-267.
Sakai H, Naito K, Ogiso-Tanaka E, Takahashi Y, Iseki K, Muto C, et al. 2015. The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genome. Sci. Rep. 5: 16780.
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069.
Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421.
Li P-E, Lo C-C, Anderson JJ, Davenport KW, Bishop-Lilly KA, Xu Y, et al. 2017. Enabling the democratization of the genomics revolution with a fully integrated Web-based bioinformatics platform. Nucleic Acids Res. 45: 67-80.
Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589-595.
O'Leary N A, W right MW, Brister JR, C iufo S , Haddad D , McVeigh R, et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44: D733-D745.
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238.
Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495.
Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC. 2010. CAZymes Analysis Toolkit (CAT): Web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology 20: 1574-1584.
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44: D279-D285.
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. 2016. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44: D286-D293.
Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428: 726-731.
Konietzny SG, Pope PB, Weimann A, McHardy AC. 2014. Inference of phenotype-defining functional modules of protein families for microbial plant biomass degraders. Biotechnol. Biofuels 7: 124.
Zhu D, Zhang P, Xie C, Zhang W, Sun J, Qian WJ, Yang B. 2017. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. Biotechnol. Biofuels 10: 44.
Zhang J, Presley GN, Hammel KE, Ryu JS, Menke JR, Figueroa M, et al. 2016. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta. Proc. Natl. Acad. Sci. USA 113: 10968-10973.
Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG. 2012. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 5: 45.
Kameshwar AKS, Qin WS. 2016. Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms. Int. J. Biol. Sci. 12: 156-171.
Jimenez DJ, de Lima Brossi MJ, Schuckel J, Kracun SK, Willats WG, van Elsas JD. 2016. Characterization of three plant biomass-degrading microbial consortia by metagenomicsand metasecretomics-based approaches. Appl. Microbiol. Biotechnol. 100: 10463-10477.
Folman LB, Klein Gunnewiek PJ, Boddy L, de Boer W. 2008. Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiol. Ecol. 63: 181-191.
Lacerda J unior G V, N oronha M F, d e Sousa ST, Cabral L , Domingos DF, Saber ML, et al. 2017. Potential of semiarid soil from Caatinga biome as a novel source for mining lignocellulose-degrading enzymes. FEMS Microbiol. Ecol. 93: fiw248.
Kim Y, Liesack W. 2015. Differential assemblage of functional units in paddy soil microbiomes. PLoS One 10: e0122221.
Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, et al. 2015. Lignocellulose degradation mechanisms across the Tree of Life. Curr. Opin. Chem. Biol. 29: 108-119.
Wang C, Dong D, Wang H, Muller K, Qin Y, Wang H, et al. 2016. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels 9: 22.
Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560-565.
Lopez-Mondejar R, Zuhlke D, Becher D, Riedel K, Baldrian P. 2016. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci. Rep. 6: 25279.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.