$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Metagenomic SMRT Sequencing-Based Exploration of Novel Lignocellulose-Degrading Capability in Wood Detritus from Torreya nucifera in Bija Forest on Jeju Island 원문보기

Journal of microbiology and biotechnology, v.27 no.9, 2017년, pp.1670 - 1680  

Oh, Han Na (Department of Systems Biotechnology, Chung-Ang University) ,  Lee, Tae Kwon (Department of Environmental Engineering, Yonsei University) ,  Park, Jae Wan (Department of Systems Biotechnology, Chung-Ang University) ,  No, Jee Hyun (Department of Environmental Engineering, Yonsei University) ,  Kim, Dockyu (Division of Life Sciences, Korea Polar Research Institute) ,  Sul, Woo Jun (Department of Systems Biotechnology, Chung-Ang University)

Abstract AI-Helper 아이콘AI-Helper

Lignocellulose, composed mostly of cellulose, hemicellulose, and lignin generated through secondary growth of woody plant, is considered as promising resources for biofuel. In order to use lignocellulose as a biofuel, biodegradation besides high-cost chemical treatments were applied, but knowledge o...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Extracted DNA was used for PCR and 16S rRNA gene sequencing. The PCR amplification was carried out using the primer set V4-V5 region of the 16S rRNA gene (forward: CCA GCA GC[T,C] GCG GT[G,A] A.; reverse: CCG TCA ATT C.T TT[G,A] AGT). In the first PCR, thermal cycle conditions were 95oC for 3 min, followed by 33 cycles of 30 sec denaturation at 95oC, 30 sec at 55oC for annealing, and 1 min at 72oC for extension, and a final extension was performed at 72oC for 5 min.
  • Then, the product was barcoded using the Nextera XT Index Kit v2 (Illumina, USA) and amplified for 8 cycles. The second PCR product was purified using AMPure XP beads and the quality of the enriched libraries was evaluated using the Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific, US). The libraries were sequenced at Macrogen (Korea) by means of the Illumina MiSeq platform, and the generated 16S rRNA gene sequences were processed and analyzed with QIIME [16, 17].
  • A total of 217,558 reads ranging from 5,202 to 61,553 bp in length were obtained and subsequently assembled by the hierarchical genomeassembly process (HGAP) into 204 contigs with a contig N50 of 15,225 bp. The mean coverage of the assembled sequences was 45.5-fold, and this coverage was relatively low, but accurate analysis was possible by providing the long reads to reduce the error through assembly. The metagenome dataset statistics are summarized in Table 1.

대상 데이터

  • Taxonomic classification of contigs was performed by Edge Perl scripts [26] using Burrows-Wheeler Aligner (BWA) [27] mapping to National Center for Biotechnology Information (NCBI) RefSeq [26-28]. The data reported in this paper are available at the SRA database with the accession number of SRR5230003.
본문요약 정보가 도움이 되었나요?

참고문헌 (49)

  1. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577. 

  2. Lee H, Hamid S, Zain S. 2014. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. ScientificWorldJournal. 2014: 631013. 

  3. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804-807. 

  4. Gallezot P. 2012. Conversion of biomass to selected chemical products. Chem. Soc. Rev. 41: 1538-1558. 

  5. Kato DM, Elia N, Flythe M, Lynn BC. 2014. Pretreatment of lignocellulosic biomass using Fenton chemistry. Bioresour. Technol. 162: 273-278. 

  6. Iqbal HMN, Kyazze G, Keshavarz T. 2013. Advances in the valorization of lignocellulosic materials by biotechnology: an overview. BioResources 8: 3157-3176. 

  7. Mhuantong W, Charoensawan V, Kanokratana P, Tangphatsornruang S, Champreda V. 2015. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnol. Biofuels 8: 16. 

  8. Kanokratana P, Uengwetwanit T, Rattanachomsri U, Bunterngsook B, Nimchua T, Tangphatsornruang S, et al. 2011. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microb. Ecol. 61: 518-528. 

  9. Woo HL, Hazen TC, Simmons BA, DeAngelis KM. 2014. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Syst. Appl. Microbiol. 37: 60-67. 

  10. Aylward FO, Burnum KE, Scott JJ, Suen G, Tringe SG, Adams SM, et al. 2012. Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens. ISME J. 6: 1688-1701. 

  11. Scully ED, Geib SM, Hoover K, Tien M, Tringe SG, Barry KW, et al. 2013. Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS One 8: e73827. 

  12. Metzker ML. 2010. Sequencing technologies - the next generation. Nat. Rev. Genetics 11: 31-46. 

  13. Roberts RJ, Carneiro MO, Schatz MC. 2013. The advantages of SMRT sequencing. Genome Biol. 14: 405. 

  14. Qin W. 2016. Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms. Int. J. Biol. Sci. 12: 156. 

  15. Kim DS, Lee JH, Yang SH. 2010. Plant Community Dynamics, pp. 107-135. 

  16. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6: 1621-1624. 

  17. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. 

  18. Eren AM, Vineis JH, Morrison HG, Sogin ML. 2013. A filtering method to generate high quality short reads using Illumina paired-end technology. PLoS One 8: e66643. 

  19. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. 

  20. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. 2009. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: D141-D145. 

  21. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. 2010. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26: 266-267. 

  22. Sakai H, Naito K, Ogiso-Tanaka E, Takahashi Y, Iseki K, Muto C, et al. 2015. The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genome. Sci. Rep. 5: 16780. 

  23. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069. 

  24. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119. 

  25. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421. 

  26. Li P-E, Lo C-C, Anderson JJ, Davenport KW, Bishop-Lilly KA, Xu Y, et al. 2017. Enabling the democratization of the genomics revolution with a fully integrated Web-based bioinformatics platform. Nucleic Acids Res. 45: 67-80. 

  27. Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589-595. 

  28. O'Leary N A, W right MW, Brister JR, C iufo S , Haddad D , McVeigh R, et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44: D733-D745. 

  29. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238. 

  30. Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495. 

  31. Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC. 2010. CAZymes Analysis Toolkit (CAT): Web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology 20: 1574-1584. 

  32. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44: D279-D285. 

  33. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75. 

  34. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. 2016. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44: D286-D293. 

  35. Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428: 726-731. 

  36. Konietzny SG, Pope PB, Weimann A, McHardy AC. 2014. Inference of phenotype-defining functional modules of protein families for microbial plant biomass degraders. Biotechnol. Biofuels 7: 124. 

  37. Zhu D, Zhang P, Xie C, Zhang W, Sun J, Qian WJ, Yang B. 2017. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. Biotechnol. Biofuels 10: 44. 

  38. Zhang J, Presley GN, Hammel KE, Ryu JS, Menke JR, Figueroa M, et al. 2016. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta. Proc. Natl. Acad. Sci. USA 113: 10968-10973. 

  39. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG. 2012. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 5: 45. 

  40. Kameshwar AKS, Qin WS. 2016. Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms. Int. J. Biol. Sci. 12: 156-171. 

  41. Han S-I. 2016. Phylogenetic characteristics of bacterial populations and isolation of aromatic compounds utilizing bacteria from humus layer of oak forest. Korean J. Microbiol. 52: 175-182. 

  42. Jimenez DJ, de Lima Brossi MJ, Schuckel J, Kracun SK, Willats WG, van Elsas JD. 2016. Characterization of three plant biomass-degrading microbial consortia by metagenomicsand metasecretomics-based approaches. Appl. Microbiol. Biotechnol. 100: 10463-10477. 

  43. Folman LB, Klein Gunnewiek PJ, Boddy L, de Boer W. 2008. Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiol. Ecol. 63: 181-191. 

  44. Lacerda J unior G V, N oronha M F, d e Sousa ST, Cabral L , Domingos DF, Saber ML, et al. 2017. Potential of semiarid soil from Caatinga biome as a novel source for mining lignocellulose-degrading enzymes. FEMS Microbiol. Ecol. 93: fiw248. 

  45. Kim Y, Liesack W. 2015. Differential assemblage of functional units in paddy soil microbiomes. PLoS One 10: e0122221. 

  46. Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, et al. 2015. Lignocellulose degradation mechanisms across the Tree of Life. Curr. Opin. Chem. Biol. 29: 108-119. 

  47. Wang C, Dong D, Wang H, Muller K, Qin Y, Wang H, et al. 2016. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels 9: 22. 

  48. Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560-565. 

  49. Lopez-Mondejar R, Zuhlke D, Becher D, Riedel K, Baldrian P. 2016. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci. Rep. 6: 25279. 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로