최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기환경생물 = Korean journal of environmental biology, v.38 no.1, 2020년, pp.114 - 126
주재형 (한양대학교 생명과학과) , 박범수 (한양대학교 생명과학과) , 김세희 (한양대학교 생명과학과) , 한명수 (한양대학교 생명과학과)
Bloom-forming toxic cyanobacteria Microcystis spp. are common in the summer season in temperate freshwater ecosystems. Often, it leads to the degradation of water quality and affects the quality of drinking water. In a previous study, NQ (naphthoquinone) compounds were shown to be effective, selecti...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
Naphthoquinone란 무엇인가? | Naphthoquinone(NQ) 물질은 생물유래 물질로서 다양한 식물(plants), 균류(fungi), 미생물(microorganisms)의 2차 대사산물로서 자연계에 많이 존재하는 물질이다. 특히, NQ 계열 물질은 Droseraceae, Juglandaceae, Nepenthaceae, Plumbaginaceae 등의 유관속 식물(vascular plant)에 속하는 식물에 많이 존재하며(Binder et al. | |
생물유래 물질인 NQ 계열 물질이 식물플랑크톤에서 어떤 작용을 하는가? | 2007) 다양한 의약품의 기초 물질로서 연구가 수행되었다. 또한, NQ 계열의 물질은 식물플랑크톤의 광합성 체계(photosynthetic system)의 Q site를 교란한다고 보고되었다(Oettmeier et al. 1986; Biggins 1990; Jewess et al. | |
NQ 계열 물질이 많이 존재하는 곳은 무엇인가? | Naphthoquinone(NQ) 물질은 생물유래 물질로서 다양한 식물(plants), 균류(fungi), 미생물(microorganisms)의 2차 대사산물로서 자연계에 많이 존재하는 물질이다. 특히, NQ 계열 물질은 Droseraceae, Juglandaceae, Nepenthaceae, Plumbaginaceae 등의 유관속 식물(vascular plant)에 속하는 식물에 많이 존재하며(Binder et al. 1989; Crouch et al. |
APHA. 2005. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF, Washington D.C., USA.
Bates B, Z Kundzewicz and S Wu. 2008. Climate Change and Water. Intergovernmental Panel on Climate Change Secretariat. Geneva, Switzerland.
Biggins J. 1990. Evaluation of selected benzoquinones, naphthoquinones, and anthraquinones as replacements for phylloquinone in the A1 acceptor site of the photosystem I reaction center. Biochemistry 29:7259-7264.
Binder RG, ME Benson and RA Flath. 1989. Eight 1, 4-naphthoquinones from Juglans. Phytochemistry 28:2799-2801.
Byeon DH. 2013. Synthesis of naphthoquinone derivatives as algicides against harmful algal species. MS thesis, ChoSun University. pp. 1-62.
Crouch IJ, JF Finnien and J van Staden. 1990. Studies on the isolation of plumbagin from in vitro and in vivo grown Drosera species. Plant Cell Tiss. Org. 21:79-82.
Dong Y, SF Chin, E Blanco, EA Bey, W Kabbani, XJ Xie, WG Bornmann, DA Boothman and J Gao. 2009. Intratumoral delivery of ${\beta}$ -lapachone via polymer implants for prostate cancer therapy. Clin. Cancer Res. 15:131-139.
Foflonker F. 2009. Biological methods to control common algal bloom-forming species. Basic Biotechnol. eJournal 5:19-24.
Gumbo RJ, G Ross and ET Cloete. 2008. Biological control of Microcystis dominated harmful algal blooms. Afr. J. Biotechnol. 7:4765-4773.
Gumbo JR, G Ross and TE Cloete. 2010. The isolation and identification of predatory bacteria from a Microcystis algal bloom. Afr. J. Biotechnol. 9:663-671.
Hickey CW and MM Gibbs. 2009. Lake sediment phosphorus release management-decision support and risk assessment framework. New Zeal. J. Mar. Fresh. 43:819-856.
Jewess PJ, J Higgins, KJ Berry, SR Moss, AB Boogaard and BPS Khambay. 2002. Herbicidal action of 2 -hydroxy-3-alkyl -1, 4-naphthoquinones. Pest Manag. Sci. 58:234-242.
Joo JH, YH Kang, BS Park, CS Park, H Cho and MS Han. 2016. A field application feasibility assessment of naphthoquinone derivatives for the mitigation of freshwater diatom Stephanodiscus blooms. J. Appl. Phycol. 28:1735-1746.
Joo JH, Z Kuang, P Wang, BS Park, SK Patidar and MS Han. 2017a. Ecological assessment of an algaecidal naphthoquinone derivate for the mitigation of Stephanodiscus within a mesocosm. Environ. Pollut. 229:735-745.
Joo JH, P Wang, BS Park, JH Byun, HJ Choi, SH Kim and MS Han. 2017b. Improvement of cyanobacterial-killing biologically derived substances (BDSs) using an ecologically safe and cost-effective naphthoquinone derivative. Ecotox. Environ. Safe. 141:188-198.
Kim HG. 2006. Mitigation and controls of HABs. pp. 327-338. In: Ecology of Harmful Algae. Springer, Berlin, Heidelberg.
Koss AM and WE Snyder. 2005. Alternative prey disrupt biocontrol by a guild of generalist predators. Biol. Control. 32:243-251.
Lee HW, BS Park, JH Joo, SK Patidar, HJ Choi, E Jin and MS Han. 2018. Cyanobacteria-specific algicidal mechanism of bioinspired naphthoquinone derivative, NQ 2-0. Sci. Rep. 8:11595.
Lim BJ, SH Kim and SO Jun. 2002. Application of various plants as an inhibitor of algal growth: studies in barge enclosure and artificially eutrophicated pond. Korean J. Limnol. 35:123-132.
Lin LC, LL Yang and CJ Chou. 2003. Cytotoxic naphthoquinones and plumbagic acid glucosides from Plumbago zeylanica. Phytochemistry 62:619-622.
Lurling M and FV Oosterhout. 2013. Case study on the efficacy of a lanthanum-enriched clay (Phoslock $^{(R)}$ ) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands). Hydrobiologia 710:253-263.
Margalef R. 1958. Information theory in ecology. Gen. Syst. 3:36-71.
Monks TJ, RP Hanzlik, GM Cohen, D Ross and DG Graham. 1992. Quinone chemistry and toxicity. Toxicol. Appl. Pharm. 112:2-16.
O'Brien PJ. 1991. Molecular mechanisms of quinone cytotoxicity. Chem-Biol. Interact. 80:1-41.
Oettmeier W, C Dierig and K Graham. 1986. QSAR of 1, 4-naphthoquinones as inhibitors of photosystem II electron transport. Quant. Struct. Act. Relat. 5:50-54.
Patterson DJ. 2003. Free-Living Freshwater Protozoa. ASM Press, Washington, D.C.
Pielou EC. 1969. Shannon's formula as a measure of specific diversity: its use and misuse. Am. Nat. 100:463-465.
Round FE, RM Crawford and DG Mann. 1990. The Diatom Biology and Morphology of Genera. Cambridge University Press, Cambridge.
Schrader KK, ND Nanayakkara, CS Tucker, AM Rimando, M Ganzera and BT Schaneberg. 2003. Novel derivate s of 9, 10-anthraquinone are selective algicides against the mustyodor cyanobacterium Oscillatoria perornata. Appl. Environ. Microbiol. 69:5319-5327.
Sengco MR and DM Anderson. 2004. Controlling harmful algal blooms through clay flocculation 1. J. Eukaryot. Microbiol. 51:169-172.
Senhorst HAJ and JJ Zwolsman. 2005. Climate change and effects on water quality: a first impression. Water Sci. Technol. 51:53-59.
Shao J, R Li, JE Lepo and JD Gu. 2013. Potential for control of harmful cyanobacterial blooms using biologically derived substances: Problems and prospects. J. Environ. Manage. 125:149-155.
Shukla S, CP Wu, K Nandigama and SV Ambudkar. 2007. The naphthoquinones, vitamin K3 and its structural analogue plumbagin, are substrates of the multidrug resistance-linked ATP binding cassette drug transporter ABCG2. Mol. Cancer Ther. 6:3279-3286.
Sigee DC, R Glenn, MJ Andrews, EG Bellinger, RD Butler, HAS Epton and RD Hendry. 1999. Biological control of cyanobacteria: principles and possibilities. pp. 161-172. In: The Ecological Bases for Lake and Reservoir Management. Springer, Dordrecht, Netherlands.
Thackeray SJ, ID Jones and SC Maberly. 2008. Long-term change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climatic change. J. Ecol. 96:523-535.
Yamamoto M, H Murai, A Takeda, S Okunishi and S Morisaki. 2005. Bacterial flora of the biofilm Formed on the submerged surface of the reed Phragmites australis. Microbes Environ. 20:14-24.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.