$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

근권미생물에 의한 식물의 생물·환경적 복합 스트레스 내성 유도
Induced Systemic Tolerance to Multiple Stresses Including Biotic and Abiotic Factors by Rhizobacteria 원문보기

Research in plant disease = 식물병연구, v.23 no.2, 2017년, pp.99 - 113  

유성제 (농촌진흥청 국립농업과학원 농업미생물과) ,  상미경 (농촌진흥청 국립농업과학원 농업미생물과)

초록
AI-Helper 아이콘AI-Helper

식물은 재배기간 동안 세균, 진균, 바이러스 등의 생물 스트레스뿐만 아니라 고온, 염, 건조 등 다양한 환경 스트레스에도 노출되어 왔다. 최근에는 기후 이상현상으로 인하여 환경 스트레스의 빈도 및 강도가 불규칙적으로 증가하고 있으며 이로 인해 병원균의 생장과 영향도 변화하여 생물과 환경의 복합 스트레스가 식물 재배에 큰 영향을 주고 있다. 유용미생물을 이용한 식물의 저항성 유도는 다양한 생물과 환경 스트레스로부터 식물을 보호하는 데 도움을 주며, 이러한 스트레스에 대한 피해를 감소시킬 수 있는 가능성을 열어 주었다. 본 리뷰에서는 식물의 생물과 환경 스트레스에 대한 피해를 감소시키는 데 영향을 주는 미생물의 결정인자에 대해 기술하였으며 미생물 결정인자에 의해 유도되는 식물 신호전달 체계 변화에 대해 기술하였다. 또한 복합 스트레스 경감을 위한 미생물의 역할과 연구 방향에 대해 기술하였다. 이 리뷰를 통해 변화하는 환경에 대비하기 위해서 다양한 방안을 마련하고 있는 농민들에게 도움이 되기를 바라며, 실제 유용미생물 연구가 식물 재배 중 발생할 수 있는 다양한 스트레스에 따른 농가 피해를 감소시킬 효과적 대응 방안으로 이어지길 바란다.

Abstract AI-Helper 아이콘AI-Helper

Recently, global warming and drastic climate change are the greatest threat to the world. The climate change can affect plant productivity by reducing plant adaptation to diverse environments including frequent high temperature; worsen drought condition and increased pathogen transmission and infect...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 리뷰에서는 식물의 생물과 환경 스트레스에 대한 피해를 감소시키는 데 영향을 주는 미생물의 결정인자에 대해 기술하였으며 미생물 결정인자에 의해 유도되는 식물 신호전달 체계 변화에 대해 기술하였다. 또한 복합 스트레스 경감을 위한 미생물의 역할과 연구 방향에 대해 기술하였다. 이 리뷰를 통해 변화하는 환경에 대비하기 위해서 다양한 방안을 마련하고 있는 농민들에게 도움이 되기를 바라며, 실제 유용미생물 연구가 식물 재배 중 발생할 수 있는 다양한 스트레스에 따른 농가 피해를 감소시킬 효과적 대응 방안으로 이어지길 바란다.
  • 본 논문에서는 각각의 또는 복합적인 생물 ∙ 환경적 스트레스에 대응하여 PGPR 등의 유용한 근권미생물에 의한 식물 저항성 또는 내성 유도 역할과 영향을 주는 요인(Table 1), 이에 의한 식물의 신호전달 체계의 변화에 대해 소개하고(Fig. 1), 이를 통해 급격한 환경변화에 의한 생물 ∙ 환경의 복합적인 스트레스에 대한 식물의 피해를 경감시키기 위한 농업적 활용 방안을 모색하고자 하였다
  • 유용미생물을 이용한 식물의 저항성 유도는 다양한 생물과 환경 스트레스로부터 식물을 보호하는 데 도움을 주며, 이러한 스트레스에 대한 피해를 감소시킬 수 있는 가능성을 열어 주었다. 본 리뷰에서는 식물의 생물과 환경 스트레스에 대한 피해를 감소시키는 데 영향을 주는 미생물의 결정인자에 대해 기술하였으며 미생물 결정인자에 의해 유도되는 식물 신호전달 체계 변화에 대해 기술하였다. 또한 복합 스트레스 경감을 위한 미생물의 역할과 연구 방향에 대해 기술하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
기후 이상현상에 따라 식물이 받는 영향은 어떠한가? 식물은 재배기간 동안 세균, 진균, 바이러스 등의 생물 스트레스뿐만 아니라 고온, 염, 건조 등 다양한 환경 스트레스에도 노출되어 왔다. 최근에는 기후 이상현상으로 인하여 환경 스트레스의 빈도 및 강도가 불규칙적으로 증가하고 있으며 이로 인해 병원균의 생장과 영향도 변화하여 생물과 환경의 복합 스트레스가 식물 재배에 큰 영향을 주고 있다. 유용미생물을 이용한 식물의 저항성 유도는 다양한 생물과 환경 스트레스로부터 식물을 보호하는 데 도움을 주며, 이러한 스트레스에 대한 피해를 감소시킬 수 있는 가능성을 열어 주었다.
극한 기후현상으로 인하여 식물의 생산성에 미치는 영향에는 어떤 것들이 있는가? 이러한 폭염, 가뭄, 홍수와 같은 극한 기후현상으로 일부 생태계, 특히 농업생태계는 심각하게 영향을 받고 있으며, 식물의 생산성에 상당히 부정적인 영향을 주는 것으로 알려져 있다(Boyer, 1982; Bray 등, 2000). 특히, 식물은 생식기간 중에 고온에 노출되면 생산량이 크게 감소하며(Forni 등, 2016; Verslues 등, 2006), 빈번한 고온 및 다습 조건은 다양한 작물에 피해를 야기하고 있다(Kal 등, 2015; Kang 등, 2016b). 이러한 이상기후로 인해 열대 및 온대지역에서 밀, 쌀 및 옥수수의 수확량이 감소할 것으로 추정되며, 멸종 가능성이 있는 식물 수가 증가하는 등 식량안보에 위협이 될 가능성이 있다(Field 등, 2014). 
식물이 받는 스트레스는 어떤 것들이 있는가? 식물은 재배기간 동안 세균, 진균, 바이러스 등의 생물 스트레스뿐만 아니라 고온, 염, 건조 등 다양한 환경 스트레스에도 노출되어 왔다. 최근에는 기후 이상현상으로 인하여 환경 스트레스의 빈도 및 강도가 불규칙적으로 증가하고 있으며 이로 인해 병원균의 생장과 영향도 변화하여 생물과 환경의 복합 스트레스가 식물 재배에 큰 영향을 주고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (156)

  1. Abdel-Mawgoud, A. M., Lepine, F. and Deziel, E. 2010. Rhamnolipids: diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 86: 1323-1336. 

  2. Ahmad, M., Zahir, Z. A., Asghar, H. N. and Asghar, M. 2011. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 57: 578-589. 

  3. Ait Barka, E., Nowak, J. and Clement, C. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl. Environ. Microbiol. 72: 7246-7252. 

  4. Alami, Y., Achouak, W., Marol, C. and Heulin, T. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 66: 3393-3398. 

  5. Algar, E., Gutierrez-Manero, F. J., Garcia-Villaraco, A., Garcia-Seco, D., Lucas, J. A. and Ramos-Solano, B. 2014. The role of isoflavone metabolism in plant protection depends on the rhizobacterial MAMP that triggers systemic resistance against Xanthomonas axonopodis pv. glycines in Glycine max (L.) Merr. cv. Osumi. Plant Physiol. Biochem. 82: 9-16. 

  6. Arshad, M., Shaharoona, B. and Mahmood, T. 2008. Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18: 611-620. 

  7. Ashraf, M., Hasnain, S., Berge, O. and Mahmood, T. 2004. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol. Fertil. Soils 40: 157. 

  8. Atkinson, N. J., Lilley, C. J. and Urwin, P. E. 2013. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 162: 2028-2041. 

  9. Atkinson, N. J. and Urwin, P. E. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63: 3523-3543. 

  10. Audenaert, K., Pattery, T., Cornelis, P. and Hofte, M. 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant-Microbe Interact. 15: 1147-1156. 

  11. Azami-Sardooei, Z., Franca, S. C., De Vleesschauwer, D. and Hofte, M. 2010. Rivoflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide- fueled resistance response. Physiol. Mol. Plant Pathol. 75: 23-29. 

  12. Azpiroz, R., Wu, Y., LoCascio, J. C. and Feldmann, K. A. 1998. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10: 219-230. 

  13. Badri, D. V., Weir, T. L., van der Lelie, D. and Vivanco, J. M. 2009. Rhizosphere chemical dialogues: plant-microbe interactions. Curr. Opin. Biotechnol. 20: 642-650. 

  14. Bakker, A. W. and Schippers, B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol. Biochem. 19: 451-457. 

  15. Bakker, P. A. H. M., Pieterse, C. M. J. and van Loon, L. C. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97: 239-243. 

  16. Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. D. and Whittaker, J. B. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol. 8: 1-16. 

  17. Barriuso, J., Solano, B. R. and Gutierrez Manero, F. J. 2008. Protection against pathogen and salt stress by four plant growthpromoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98: 666-672. 

  18. Barth, C., Moeder, W., Klessig, D. F. and Conklin, P. L. 2004. The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol. 134: 1784-1792. 

  19. Bashan, Y. and De-Bashan, L. E. 2002. Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 68: 2637-2643. 

  20. Baya, A. M., Boethling, R. S. and Ramos-Cormenzana, A. 1981. Vitamin production in relation to phosphate solubilization by soil bacteria. Soil Biol. Bilchem. 13: 527-531. 

  21. Beneduzi, A., Ambrosini, A. and Passaglia, L. M. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35(4 Suppl): 1044-1051. 

  22. Bensalim, S., Nowak, J. and Asiedu, S. K. 1998. A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am. J. Potato Res. 75: 145-152. 

  23. Bhattacharyya, P. N. and D. K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327-1350. 

  24. Bilski, P., Li, M. Y., Ehrenshaft, M., Daub, M. E. and Chignell, C. F. 2000. Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem. Photobiol. 71: 129-134. 

  25. Bogino, P. C., Oliva Mde, L., Sorroche, F. G. and Giordano, W. 2013. The role of bacterial biofilms and surface components in plantbacterial associations. Int. J. Mol. Sci. 14: 15838-15859. 

  26. Bostock, R. M., Pye, M. F. and Roubtsova, T. V. 2014. Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu. Rev. Phytopathol. 52: 517-549. 

  27. Boubakri, H., Gargouri, M., Mliki, A., Brini, F., Chong, J. and Jbara, M. 2016. Vitamins for enhancing plant resistance. Planta 244: 529-543. 

  28. Boyer, J. S. 1982. Plant productivity and environment. Science 218: 443-448. 

  29. Bray, E. A., Bailey-Serres, J. and Weretilnyk, E. 2000. Responses to abiotic stresses. In: Biochemistry and Molecular Biology of Plants, eds. by W. Gruissem, B. Buchannan and R. Jones, pp. 1158-1249. American Society of Plant Physiologists, Rockville, MD, USA. 

  30. Campbell, G. R., Taga, M. E., Mistry, K., Lloret, J., Anderson, P. J., Roth, J. R. and Walker, G. C. 2006. Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of $B_{12}$ . Proc. Natl. Acad. Sci. U. S. A. 103: 4634-4639. 

  31. Carrillo, P. G., Mardaraz, C., Pitta-Alvarez, S. I. and Giulietti, A. M. 1996. Isolation and selection of biosurfactant-producing bacteria. World J. Microbiol. Biotechnol. 12: 82-84. 

  32. Carrillo­Castaneda, G., Munoz, J. J., Peralta­Videa, J. R., Gomez, E. and Gardea­Torresdey, J. L. 2003. Plant growth­promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J. Plant Nutr. 26: 1801-1814. 

  33. Carrillo-Castaneda, G., Munoz, J. J., Peralta-Videa, J. R., Gomez, E. and Gardea-Torresdey, J. L. 2005. Modulation of uptake and translocation of iron and copper from root to shoot in common bean by siderophore-producing microorganisms. J. Plant Nutr. 28: 1853-1865. 

  34. Chaparro, J. M., Sheflin, A. M., Manter, D. K. and Vivanco, J. M. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils. 48: 489-499. 

  35. Chen, H. and Xiong, L. 2005. Pyridoxine is required for postembryonic root development and tolerance to osmotic and oxidative stresses. Plant J. 44: 396-408. 

  36. Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J. Y., Lee, Y. H., Cho, B. H., Yang, K. Y., Ryu, C. M. and Kim, Y. C. 2008. 2R,3Rbutanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21: 1067-1075. 

  37. Choudhary, D. K., Kasotia, A., Jain, S., Vaishnav, A., Kumari, S., Sharma, K. P. and Varma, A. 2016. Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J. Plant Growth Regul. 35: 276-300. 

  38. Cohen, A. C., Travaglia, C. N., Bottini, R. and Piccoli, P. N. 2009. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87: 455-462. 

  39. Conn, V. M., Walker, A. R. and Franco, C. M. 2008. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21: 208-218. 

  40. Cook, R. J., Thomashow, L. S., Weller, D. M., Fujimoto, D., Mazzola, M., Bangera, G. and Kim, D. S. 1995. Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. U. S. A. 92: 4197-4201. 

  41. De Meyer, G., Audenaert, K. and Hofte, M. 1999. Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. Eur. J. Plant Pathol. 105: 513-517. 

  42. De Vleesschauwer, D. and Hofte, M. 2009. Rhizobacteria-induced systemic resistance. Adv. Bot. Res. 51: 223-281. 

  43. Dimkpa, C., Weinand, T. and Asch, F. 2009. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32: 1682-1694. 

  44. Dodd, I. C. and Perez-Alfocea, F. 2012. Microbial amelioration of crop salinity stress. J. Exp. Bot. 63: 3415-3428. 

  45. Dodd, I. C., Zinovkina, N. Y., Safronova, V. I. and Belimov, A. A. 2010. Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol. 157: 361-379. 

  46. Dodds, P. N. and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11: 539-548. 

  47. Dong, H. and Beer, S. V. 2000. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90: 801-811. 

  48. Egamberdiyeva, D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36: 184-189. 

  49. Eliasson, L., Bertell, G. and Bolander, E. 1989. Inhibitory action of auxin on root elongation not mediated by ethylene. Plant Physiol. 91: 310-314. 

  50. Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., Khan, F. A., Khan, F., Chen, Y., Wu, C., Tabassum, M. A., Chun, M. X., Afzal, M., Jan, A., Jan, M. T. and Huang, J. 2015. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ. Sci. Pollut. Res. 22: 4907-4921. 

  51. Falardeau, J., Wise, C., Novitsky, L. and Avis, T. J. 2013. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J. Chem. Ecol. 39: 869-878. 

  52. Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R. and White, L. L. 2014. Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects, Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Changes. Cambridge University Press, Cambridge, UK and New York, NY, USA. 

  53. Figueiredo, M. V. B., Burity, H. A., Martinez, C. R. and Chanway, C. P. 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. Soil Ecol. 40: 182-188. 

  54. Flemming, H. C. and Wingender, J. 2001. Relevance of microbial extracellular polymeric substances (EPSs)-Part I: structural and ecological aspects. Water Sci. Technol. 43: 1-8. 

  55. Forni, C., Duca, D. and Glick, B. R. 2016. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil. 410: 335-356. 

  56. Fu, Z. Q. and Dong, X. 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64: 839-863. 

  57. Glick, B. R. 2006. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS. Microbiol. Lett. 251: 1-7. 

  58. Glick, B. R., Cheng, Z., Czarny, J. and Duan, J. 2007a. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119: 329-339. 

  59. Glick, B. R., Todorovic, B., Czarny, J., Cheng, Z., Duan, J. and Mc- Conkey, B. 2007b. Promotion of plant growth by bacterial ACC deaminase. Crit. Rev. Plant Sci. 26: 227-242. 

  60. Goel, A. K., Lundberg, D., Torres, M. A., Matthews, R., Akimoto-Tomiyama, C., Farmer, L., Dangl, J. L. and Grant, S. R. 2008. The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants. Mol. Plant-Microbe Interact. 21: 361-370. 

  61. Gontia-Mishra, I., Sasidharan, S. and Tiwari, S. 2014. Recent developments in use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnol. Lett. 36: 889-898. 

  62. Gozzo, F. and Faoro, F. 2013. Systemic acquired resistance (50 years after discovery): moving from the lab to the field. J. Agric. Food Chem. 61: 12473-12491. 

  63. Haggag, W. M. 2007. Colonization of exopolysaccharide-producing Paenibacillus polymyxa on peanut roots for enhancing resistance against crown rot disease. Afr. J. Biotechnol. 6: 1568-1577. 

  64. Hamayun, M., Khan, S. A., Khan, A. L., Shin, J. H., Ahmad, B., Shin, D. H. and Lee, I. J. 2010. Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J. Agric. Food Chem. 58: 7226-7232. 

  65. Hansen, J., Sato, M. and Ruedy, R. 2012. Perception of climate change. Proc. Natl. Acad. Sci. U. S. A. 109: E2415-E2423. 

  66. Hardoim, P. R., van Overbeek, L. S. and Elsas, J. D. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16: 463-471. 

  67. Heil, M. 1999. Systemic acquired resistance: available information and open ecological questions. J. Ecol. 87: 341-346. 

  68. Hoffland, E., Pieterse, C. M. J., Bik, P. L. and van Pelt, J. A. 1995. Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Phyisol. Mol. Plant Pathol. 46: 309-320. 

  69. Iavicoli, A., Boutete, E., Buchala, A. and Metraux, J. P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16: 851-858. 

  70. Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329. 

  71. Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. and Greenberg, J. T. 2009. Priming in systemic plant immunity. Science 324: 89-91. 

  72. Kal, B. S., Lee, N. E. and Park, J. B. 2015. A study of climate change patterns of Korea through the standardization and composite impact analysis of the long-term weather data. J. Korean Soc. Hazard Mitig. 15: 377-383. (In Korean) 

  73. Kang, B. R., Han, S. H., Kim, C. H. and Kim, Y. C. 2016a. Riboflavinbased BiodoctorTM induced disease resistance against rice blast and bacterial leaf blight diseases. Res. Plant Dis. 22: 202-207. 

  74. Kang, I. J., Kim, S. H., Shim, H. K., Seo, M. J., Shin, D. B., Roh, J. H. and Heu, S. 2016b. Incidence of wildfire disease on soybean of Korea during 2014-2015. Res. Plant Dis. 22: 38-43. 

  75. Kang, S. M., Radhakrishnan, R., Khan, A. L., Kim, M. J., Park, J. M., Kim, B. R., Shin, D. H. and Lee, I. J. 2014. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol. Biochem. 84: 115-124. 

  76. Kariola, T., Brader, G., Helenius, E., Li, J., Heino, P. and Palva, E. T. 2006. Early responsive to dehydration 15, a negative regulator of abscisic acid responses in Arabidopsis. Plant Physiol. 142: 1559-1573. 

  77. Kaushal, M. and Wani, S. P. 2016. Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann. Microbiol. 66: 35-42. 

  78. Keskin, B. C., Sarikaya, A. T., Yuksel, B. and Memon, A. R. 2010. Abscisic acid regulated gene expression in bread wheat (Triticum aestivum L.). Aust. J. Crop Sci. 4: 617-625. 

  79. Khripach, V., Zhabinskii, V. and de Groot, A. 2000. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 86: 441-447. 

  80. Kissoudis, C., van de Wiel, C., Visser, R. G. and van der Linden, G. 2014. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front. Plant Sci. 5: 207. 

  81. Kiyosue, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. ERD15, a cDNA for a dehydration-induced gene from Arabidopsis thaliana. Plant Physiol. 106: 1707. 

  82. Kloepper, J. W. 1983. Effect of seed piece inoculation with plant growth-promoting rhizobacteria on populations of Erwinia carotovora on potato roots and in daughter tubers. Phytopathology 73: 217-219. 

  83. Kloepper, J. W. 1991. Development of in vivo assays for prescreening antagonists of Rhizoctonia solani on cotton. Phytopathology 81: 1006-1013. 

  84. Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266. 

  85. Kloepper, J. W. and Schroth, M. N. 1981. Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71: 1020-1024. 

  86. Lee, S. G., Lee, H. J., Kim, S. K., Choi, C. S. and Park, S. T. 2016. Influence of waterlogging period on the growth, physiological responses, and yield of kimchi cabbage. J. Environ. Sci. Int. 25: 535-542. (In Korean) 

  87. Lee, S. M., Chung, J. H. and Ryu, C. M. 2015. Augmenting plant immune responses and biological control by microbial determinants. Res. Plant Dis. 21: 161-179. (In Korean) 

  88. Liu, F., Xing, S., Ma, H., Du, Z. and Ma, B. 2013. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl. Microbiol. Biotechnol. 97: 9155-9164. 

  89. Lucas, J. A., Garcia-Cristobal, J., Bonilla, A., Ramos, B. and Gutierrez- Manero, J. 2014. Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiol. Biochem. 82: 44-53. 

  90. Madgwick, J. W., West, J. S., White, R. P., Semenov, M. A., Townsend, J. A., Turner, J. A. and Fitt, B. D. L. 2011. Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. Eur. J. Plant Pathol. 130: 117. 

  91. Maksimov, I. V., Abizgil'dina, R. R. and Pusenkova, L. I. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl. Biochem. Microbiol. 47: 333-345. 

  92. Maksimov, I. V., Veselova, S. V., Nuzhnaya, T. V., Sarvarova, E. R. and Khairullin, R. M. 2015. Plant growth-promoting bacteria in regulation of plant resistance to stress factors. Russ. J. Plant Physiol. 62: 715-726. 

  93. Mendes, R., Garbeva, P. and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37: 634-663. 

  94. Meziane, H., van der Sluis, I., van Loon, L. C., Hofte, M. and Bakker, P. A. 2005. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant Pathol. 6: 177-185. 

  95. Miyamoto, E., Watanabe, F., Takenaka, H. and Nakano, Y. 2002. Uptake and physiological function of vitamin $B_{12}$ in a photosynthetic unicellular coccolithophorid alga, Pleurochrysis carterae. Biosci. Biotechnol. Biochem. 66: 195-198. 

  96. Nadeem, S. M., Zahir, Z. A., Naveed, M. and Arshad, M. 2007. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can. J. Microbiol. 53: 1141-1149. 

  97. Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S., Yamaguchi, I. and Yoshida, S. 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33: 887-898. 

  98. Naseem, H. and Bano, A. 2014. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J. Plant Interact. 9: 689-701. 

  99. Newman, M. A., Sundelin, T., Nielsen, J. T. and Erbs, G. 2013. MAMP(microbe-associated molecular pattern) triggered immunity in plants. Front. Plant Sci. 4: 139. 

  100. Niu, D., Wang, X., Wang, Y., Song, X., Wang, J., Guo, J. and Zhao, H. 2016. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway. Biochem. Biophys. Res. Commun. 469: 120-125. 

  101. Okmen, B. and Doehlemann, G. 2014. Inside plant: biotrophic strategies to modulate host immunity and metabolism. Curr. Opin. Plant Biol. 20: 19-25. 

  102. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090. 

  103. Palacios, O. A., Bashan, Y. and de-Bashan, L. E. 2014. Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria: an overview. Biol. Fertil. Soils 50: 415-432. 

  104. Pandey, P. K., Yadav, S. K., Singh, A., Sarma, B. K., Mishra, A. and Singh, H. B. 2012. Cross-species alleviation of biotic and abiotic stresses by the endophyte Pseudomonas aeruginosa PW09. J. Phytopathol. 160: 532-539. 

  105. Pastori, G. M., Kiddle, G., Antoniw, J., Bernard, S., Veljovic-Jovanovic, S., Verrier, P. J., Noctor, G. and Foyer, C. H. 2003. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15: 939-951. 

  106. Paul, M. J., Primavesi, L. F., Jhurreea, D. and Zhang, Y. 2008. Trehalose metabolism and signaling. Annu. Rev. Plant Biol. 59: 417-441. 

  107. Pierik, R., Sasidharan, R. and Voesenek, L. A. C. J. 2007. Growth control by ethylene: adjusting phenotypes to the environment. J. Plant Growth Regul. 26: 188-200. 

  108. Pieterse, C. M. J., Van Pelt, J. A., Ton, J., Parchmann, S., Mueller, M. J., Buchala, A. J. and Metraux, J. P. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol. Mol. Plant Pathol. 57: 123-134. 

  109. Pieterse, C. M., van Wees, S. C., Hoffland, E., van Pelt, J. A. and van Loon, L. C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8: 1225-1237. 

  110. Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571-1580. 

  111. Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., van Wees, S. C. and Bakker, P. A. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52: 347-375. 

  112. Porcel, R., Zamarreno, A. M., Garcia-Mina, J. M. and Aroca, R. 2014. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol. 14: 36. 

  113. Pozo, M. J., Van der Ent, S., van Loon, L. C. and Pieterse, C. M. 2008. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol. 180: 511-523. 

  114. Prime-A-Plant Group; Conrath, U., Bechers, G. J., Flors, V., Garcia-Agustin, P., Jakab, G. Mauch, F., Newman, M. A., Pieterse, C. M., Poinssot, B. Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L. and Mauch-Mani, B. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19: 1062-1071. 

  115. Qurashi, A. W. and Sabri, A. N. 2011. Osmoadaptation and plant growth promotion by salt tolerant bacteria under salt stress. Afr. J. Microbiol. Res. 5: 3546-3554. 

  116. Raaijmakers, J. M., de Bruijn, I. and de Kock, M. J. 2006. Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol. Plant-Microbe Interact. 19: 699-710. 

  117. Radhakrishnan, R., Khan, A. L. and Lee, I. J. 2013. Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. J. Microbiol. 51: 850-857. 

  118. Ramegowda, V. and Senthil-Kumar, M. 2015. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J. Plant Physiol. 176: 47-54. 

  119. Rasmussen, S., Barah, P., Suarez-Rodriguez, M. C., Bressendorff, S., Friis, P., Costantino, P., Bones, A. M., Nielsen, H. B. and Mundy, J. 2013. Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol. 161: 1783-1794. 

  120. Roberson, E. B. and Firestone, M. K. 1992. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 58: 1284-1291. 

  121. Rodriguez, R. J., Henson, J., van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y. O. and Redman, R. S. 2008. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2: 404-416. 

  122. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8: 1809-1819. 

  123. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026. 

  124. Ryu, C. M., Hu, C. H., Locy, R. D. and Kloepper, J. W. 2005. Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268: 285-292. 

  125. Saleem, M., Arshad, M., Hussain, S. and Bhatti, A. S. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34: 635-648. 

  126. Sanchez, L., Courteaux, B., Hubert, J., Kauffmann, S., Renault, J. H., Clement, C., Baillieul, F. and Dorey, S. 2012. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol. 160: 1630-1641. 

  127. Sang, M. K., Kim, J. D., Kim, B. S. and Kim, K. D. 2011. Root treatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathology 101: 666-678. 

  128. Sang, M. K. and Kim, K. D. 2012. The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J. Appl. Microbiol. 113: 383-398. 

  129. Sankari, J. U., Dinakar, S. and Seka, C. 2011. Dual effect of Azospirillum exopolysaccharides (EPS) on the enhancement of plant growth and biocontrol of blast (Pyricularia oryzae) disease in upland rice (var. ASD-19). J. Phytol. 3: 16-19. 

  130. Shan, L., He, P., Li, J., Heese, A., Peck, S. C., Nurnberger, T., Martin, G. B. and Sheen, J. 2008. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptorsignaling complexes and impede plant immunity. Cell Host Microbe 4: 17-27. 

  131. Shintu, P. V. and Jayaram, K. M. 2015. Phosphate solubilising bacteria (Bacillus polymyxa): an effective approach to mitigate drought in tomato (Lycopersicon esculentum Mill.). Tropic. Plant Res. 2: 17-22. 

  132. Siddiqui, I. A. and Shaukat, S. S. 2003. Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol. Biochem. 35: 1615-1623. 

  133. Spaepen, S., Bossuyt, S., Engelen, K., Marchal, K. and Vanderleyden, J. 2014. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxinproducing bacterium Azospirillum brasilense. New Phytol. 201: 850-861. 

  134. Stocker, T. E., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M. 2013. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, NY, USA. 

  135. Strange, R. N. and Scott, P. R. 2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43: 83-116. 

  136. Suarez, R., Wong, A., Ramirez, M., Barraza, A., del Carmen Orozco, M., Cevallos, M. A., Lara, M., Hernandez, G. and Iturriaga, G. 2008. Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol. Plant-Microbe Interact. 21: 958-966. 

  137. Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. and Mittler, R. 2014. Abiotic and biotic stress combinations. New Phytol. 203: 32-43. 

  138. Tarkka, M. T. and Piechulla, B. 2007. Aromatic weapons: truffles attack plants by the production of volatiles. New Phytol. 175: 381-383. 

  139. Timmusk, S., Abd El-Daim, I. A., Copolovici, L., Tanilas, T., Kannaste, A., Behers, L., Nevo, E., Seisenbaeva, G., Stenstrom, E. and Niinemets, U. 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9: e96086. 

  140. Timmusk, S. and Wagner, E. G. 1999. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant-Microbe Interact. 11: 951-959. 

  141. Ton, J., Flors, V. and Mauch-Mani, B. 2009. The multifaceted role of ABA in disease resistance. Trends Plant Sci. 14: 310-317. 

  142. Tran, H., Ficke, A., Asiimwe, T., Hofte, M. and Raaijmakers, J. M. 2007. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol. 175: 731-742. 

  143. van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol. 119: 243-254. 

  144. van Loon, L. C., Bakker, P. A. and Pieterse, C. M. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483. 

  145. Varnier, A. L, Sanchez, L., Vatsa, P., Boudesocque, L., Garcia-Brugger, A., Rabenoelina, F., Sorokin, A., Renault, J. H., Kauffmann, S., Pugin, A., Clement, C., Baillieul, F. and Dorey, S. 2009. Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ. 32: 178-193. 

  146. Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J. and Zhu, J. K. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45: 523-539. 

  147. Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. and SkZ, A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184: 13-24. 

  148. Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C. M. J., van Loon, L. C. and Bakker, P. A. H. M. 2012. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102: 403-412. 

  149. Wei, G., Kloepper, J. W. and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Collototrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81: 1508-1512. 

  150. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52(Spec Issue): 487-511. 

  151. Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. and Somero, G. N. 1982. Living with stress: evolution of osmolyte systems. Science 217: 1214-1222. 

  152. Yang, J., Kloepper, J. W. and Ryu, C. M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14: 1-4. 

  153. Yue, H., Mo, W., Li, C., Zheng, Y. and Li, H. 2007. The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant Soil 297: 139-145. 

  154. Yuwono, T., Handayani, D. and Soedarsono, J. 2005. The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aust. J. Agric. Res. 56: 715-721. 

  155. Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E., Shi, H. and Pare, P. W. 2008. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol. Plant-Microbe Interact. 6: 737-744. 

  156. Zhang, S., Yang, X., Sun, M., Sun, F., Deng, S. and Dong, H. 2009. Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J. Integr. Plant Biol. 51: 167-174. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로