$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Antibacterial Activity of Pharbitin, Isolated from the Seeds of Pharbitis nil, against Various Plant Pathogenic Bacteria 원문보기

Journal of microbiology and biotechnology, v.27 no.10, 2017년, pp.1763 - 1772  

Nguyen, Hoa Thi (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University) ,  Yu, Nan Hee (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University) ,  Park, Ae Ran (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University) ,  Park, Hae Woong (R&D Division, World Institute of Kimchi) ,  Kim, In Seon (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University) ,  Kim, Jin-Cheol (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)

Abstract AI-Helper 아이콘AI-Helper

This study aimed to isolate and characterize antibacterial metabolites from Pharbitis nil seeds and investigate their antibacterial activity against various plant pathogenic bacteria. The methanol extract of P. nil seeds showed the strongest activity against Xanthomonas arboricola pv. pruni (Xap) wi...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • The methanol extract of Pharbitis nil seeds showed the strongest activity against Rs and Xap. Therefore, this study aimed to isolate and characterize the antibacterial metabolites contained in this extract, and to examine their in vitro antibacterial activity against various plant pathogenic bacteria. Additionally, their disease control efficacy was evaluated against bacterial leaf spots on peach leaves in a detached leaf bioassay, and bacterial wilt on tomato seedlings.
  • This study focused on the identification of an antibacterial principle in the MeOH extract of P. nil seeds, and the evaluation of its in vitro and in vivo activities against phytopathogenic bacteria. The hevein-like proteins from P.
본문요약 정보가 도움이 되었나요?

참고문헌 (42)

  1. Kawaguchi A, Inoue K, Inoue Y. 2014. Biological control of bacterial spot on peach by nonpathogenic Xanthomonas campestris strains AZ98101 and AZ98106. J. Gen. Plant Pathol. 80: 158-163. 

  2. Stefani E. 2010. Economic significance and control of bacterial spot/canker of stone fruits caused by Xanthomonas arboricola pv. pruni. J. Plant Pathol. 92: S1.99-S1.103. 

  3. Wallis FM, Truter SJ. 1978. Histopathology of tomato plants infected with Pseudomonas solanacearum with emphasis on ultrastructure. Physiol. Plant Pathol. 13: 307-310. 

  4. Genin S, Boucher C. 2004. Lessons learned from the genome analysis of Ralstonia solanacearum. Annu. Rev. Phytopathol. 42: 107-134. 

  5. Hayward AC. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29: 65-87. 

  6. Vu TT, Kim J-C, Choi YH, Choi GJ, Jang KS, Choi TH, et al. 2013. Effect of gallotannins derived from Sedum takesimense on tomato bacterial wilt. Plant Dis. 97: 1593-1598. 

  7. Yoon MY, Cha BG, Kim J-C. 2013. Recent trends in studies on botanical fungicides in agriculture.Plant Pathol. J. 29: 1-9. 

  8. Le Dang Q, Shin TS, Park MS, Choi YH, Choi GJ, Jang KS, et al. 2014. Antimicrobial activities of novel mannosyl lipids isolated from the biocontrol fungus Simplicillium lamellicola BCP against phytopathogenic bacteria. J. Agric. Food Chem. 62: 3363-3370. 

  9. Nguyen HT, Yu NH, Jeon SJ, Lee HW, Bae CH, Yeo JH, et al. 2016. Antibacterial activities of penicillic acid isolated from Aspergillus persii against various plant pathogenic bacteria. Lett. Appl. Microbiol. 62: 488-493. 

  10. Austin DF, Huaman Z. 1996. A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 29: 501-502. 

  11. Miller RE, Rausher MD, Manos PS. 1999. Phylogenetic systematics of Ipomoea (Convolvulaceae) based on ITS and waxy sequences. Syst. Bot. 24: 209-227. 

  12. Kim KH, Ha SK, Choi SU, Kim SY, Lee KR. 2011. Bioactive phenolic constituents from the seeds of Pharbitis nil. Chem. Pharm. Bull. 59: 1425-1429. 

  13. Corona-Castaneda B, Pereda-Miranda R. 2012. Morning glory resin glycosides as modulators of antibiotic activity in multidrug-resistant gram-negative bacteria. Planta Med. 78: 128-131. 

  14. Kawasaki T, Okabe H, Nakatsuka I. 1971. Studies on resin glycosides. I. Reinvestigation of the components of pharbitin, a resin glycoside of the seeds of Pharbitis nil Choisy. Chem. Pharm. Bull. 19: 2394-2403. 

  15. Kim KH, Choi SU, Lee KR. 2009. Diterpene glycosides from the seeds of Pharbitis nil. J. Nat. Prod. 72: 1121-1127. 

  16. Lee OS, Lee B, Park N, Koo JC, Kim YH, Prasad DT, et al. 2003. Pn-AMPs, the hevein-like proteins from Pharbitis nil confers disease resistance against phytopathogenic fungi in tomato, Lycopersicum esculentum. Phytochemistry 62: 1073-1079. 

  17. MacLeod JK, Ward A. 1997. Structural investigation of resin glycosides from Ipomoea lonchophylla. J. Nat. Prod. 60: 467-471. 

  18. Bensky D, Gamble A. 1993. Chinese Herbasl Medicine, Revised Ed. Materia Media, Eastland Press, Seattle. 

  19. Eich E. 2008. Solanaceae and Convolvulaceae: Secondary Metabolites, Springer Verlag, Berlin Heidelberg. 

  20. Okabe H, Kawasaki T. 1970. Structures of pharbitic acids C and D. Tetrahedron Lett. 36: 3123-3126. 

  21. Lee TH, Choi JJ, Kim DH, Choi S, Lee KR, Son M, et al. 2008. Gastroprokinetic effects of DA-9701, a new prokinetic agent formulated with Pharbitis Semen and Corydalis Tuber. Phytomedicine 15: 836-843. 

  22. Kim KH, Choi SU, Son MW, Lee KR. 2010. Two new phenolic amides from the seeds of Pharbitis nil. Chem. Pharm. Bull. 58: 1532-1535. 

  23. Koo JC, Lee SY, Chun HJ, Cheong YH, Choi JS, Kawabata S-I, et al. 1998. Two hevein homologs isolated from the seeds of Pharbitis nil L. exhibit potent antifungal activity. Biochim. Biophys. Acta 1382: 80-90. 

  24. Koo JC, Chun HJ, Park HC, Kim MC, Koo YD, Koo SC, et al. 2002. Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Mol. Biol. 50: 441-452. 

  25. Ko SG, Koh SH, Jun CY, Nam CG, Bae HS, Shin MK. 2004. Induction of apoptosis by Saussurea lappa and Pharbitis nil on AGS gastric cancer cells. Biol. Pharm. Bull. 27: 1604-1610. 

  26. Hao B, Liu GL, Hu XG, Wang GX. 2012. Bioassay-guided isolation and identification of active compounds from Semen pharbitidis against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Vet. Parasitol. 187: 452-458. 

  27. Lee HJ, Jo EJ, Kim NH, Chae Y, Lee S-W. 2011. Disease responses of tomato pure lines against Ralstonia solanacearum strains from Korea and susceptibility at high temperature. Res. Plant Dis. 17: 326-333. 

  28. Koh YJ, Kim GH, Jung JS, Lee YS, Hur JS. 2010. Outbreak of bacterial canker on Hort16A (Actinidia chinensis Planchon) caused by Pseudomonas syringae pv. actinidiae in Korea. N. Z. J. Crop Hort. Sci. 38: 275-282. 

  29. Ono M, Takigawa A, Mineno T, Yoshimitu H, Nohara T, Ikeda T, et al. 2010. Acylated glycosides of hydroxyl fatty acid methyl esters generated from the crude resin glycoside (pharbitin) of seeds of Pharbitis nil by treatment with indium(III) chloride in methanol. J. Nat. Prod. 73: 1846-1852. 

  30. Ono M, Noda N, Kawasaki T, Miyahara K. 1990. Resin glycosides. VII. Reinvestigation of the component organic and glycosidic acids of pharbitin, the crude ether-insoluble resin glycoside ("convolvulin") of Pharbitidis Semen (seeds of Pharbitis nil). Chem. Pharm. Bull. 38: 1892-1897. 

  31. Socquet-Juglard D, Patocchi A, Pothier JF, Christen D, Duffy B. 2012. Evaluation of Xanthomonas arboricola pv. pruni inoculation techniques to screen for bacterial spot resistance in peach and apricot. J. Plant Pathol. 94: S1.91-S1.96. 

  32. Winstead NN, Kelman A. 1952. Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Phytopathology 42: 628-634. 

  33. Bieber LW, da Silva Filho AA, Correa Lima RMO, de Andrade Chiappeta A, do Nascimento SC, de Souza IA, et al. 1986. Anticancer and antimicrobial glycosides from Ipomoea bahiensis. Phytochemistry 25: 1077-1081. 

  34. Reynolds WF, Yu M, Enriquez RG, Gonzalez H, Leon I, Magos G, et al. 1995. Isolation and characterization of cytotoxic and antibacterial tetrasaccharide glycosides from Ipomoea stans. J. Nat. Prod. 58: 1730-1734. 

  35. Pereda-Miranda R, Mata R, Anaya AL, Wickramaratne DBM, Pezzuto JM, Kinghorn AD. 1993. Tricolorin A, major phytogrowth inhibitor from Ipomoea tricolor. J. Nat. Prod. 56: 571-582. 

  36. Okabe H, Koshito N, Tanaka K, Kawasaki T. 1971. Studies on resin glycosides. II. Unhomogeneity of "pharbitic acid" and isolation and partial structures of pharbitic acids C and D, the major constituents of "pharbitic acid". Chem. Pharm. Bull. 19: 2394-2403. 

  37. Pontes N de C, Kronka AZ, Moraes MFH, Nascimento AS, Fujinawa MF. 2011. Incorporation of neem leaves into soil to control bacterial wilt of tomato. J. Plant Pathol. 93: 741-744. 

  38. Yuan G-Q, Li Q-Q, Qin J, Ye Y-F, Lin W. 2012. Isolation of methyl gallate from Toxicodendron sylvestre and its effect on tomato bacterial wilt. Plant Dis. 96: 1143-1147. 

  39. Deberdt P, Perrin B, Coranson-Beaudu R, Duyck P-F, Wicker E. 2012. Effect of Allium fistulosum extract on Ralstonia solanacearum populations and tomato bacterial wilt. Plant Dis. 96: 687-692. 

  40. Pradhanang PM, Momol MT, Olson SM, Jones JB. 2003. Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Dis. 87: 423-427. 

  41. Ji P, Momol MT, Olson SM, Pradhanang PM, Jones JB. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis. 89: 497-500. 

  42. Lee YH, Choi CW, Kim SH, Yun JG, Chang SW, Kim YS, et al. 2012. Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol. J. 28: 32-39. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로