$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

철도터널 하부 여굴처리 방법에 대한 정적 및 동적 안정성 검토
Static and Dynamic Analysis for Railway Tunnel according to Filling Materials for overbroken tunnel bottom 원문보기

한국철도학회 논문집 = Journal of the Korean Society for Railway, v.20 no.5 = no.102, 2017년, pp.668 - 682  

서재원 (Eone engineering, Graduate School of Railway Seoul National University of Science & Technology) ,  조국환 (Dept of Railway Construction Engineering, Graduate School of Railway, Seoul National University of Science & Technology)

초록
AI-Helper 아이콘AI-Helper

철도의 고속화에 따라 선형의 직선화와 함께 터널이 철도노선에 차지하는 비중은 급격하게 증가하였다. 터널 굴착 시 필연적으로 발생하고 있는 여굴은 터널의 안정성에 큰 영향을 미치고 있다. 또한 여굴은 시공의 경제성에도 매우 중요한 요소이기도 하다. 터널 굴착 시 천단부 여굴은 굴착공법의 발달과 함께 점차 감소하고 있는 추세이다. 그러나 바닥부 여굴은 터널의 안정성에 미치는 영향이 상대적으로 적은 관계로 지속적으로 발생하고 있는 실정이다. 한국철도시설공단에서는 바닥부 여굴에 대하여 10 cm정도의 콘크리트 채움을 시공비로 인정하고 있으나, 그 이상에 대해서는 시공사가 부담하여 채움을 실시하고 있다. 바닥부 여굴에 대한 채움은 콘크리트 채움을 원칙으로 하고 있으나 경우에 따라 버림 콘크리트와 혼합골재를 병행하여 시공하는 곳도 발생하고 있다. 이는 궤도 하부에 연속체 재료와 불연속체 재료의 존재를 발생시키게 되며, 열차 운행 중 발생하는 진동의 전파에 영향을 미치게 된다. 일반적으로 콘크리트와 같은 연속체 재료만 존재하는 경우에는 열차운행에 의한 진동이 터널주면 암반으로 자연스럽게 전파될 수 있는 조건이 발생하나, 불연속체가 존재하면 진동의 전파와 반사에서 다른 특성을 나타낼 수밖에 없게 된다. 이에 본 논문에서는 터널 바닥 채움 재료에 대하여 시멘트 혼합비율을 5%, 11.5%, 18% 등으로 달리하여 시료를 제작하였다. 제작된 시료의 동적 물성시험을 실시하였으며, 이를 바탕으로 수치해석을 실시하였다. 수치해석 결과 모든 재료의 배합은 정적안정성을 만족하는 것으로 나타났다. 그러나 동적거동에서는 빈배합콘크리트와 시멘트 함유량이 낮은 채움재를 사용하였을 경우 특정 운행속도에서 공진이 발생할 수 있는 것으로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

Alignments of railways recently constructed in Korea have been straightened due to the advent of high-speed rail, which means increasing the numbers of tunnels and bridges. Overbreak during tunnel construction may be unavoidable, and is very influential on overall stability. Over-excavation in tunne...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구에서는 터널 연장이 길고 바닥부의 여굴량이 많은 경우에 한하여 바닥부 채움부에 다른 재료의 사용 가능성을 검토하고자 한다.
  • 본 절에서는 터널 내부로 운행하고자하는 고속열차 운행 시 공진발생 가능성에 대하여 해석을 수행하였다.

가설 설정

  • 본 연구에서는 터널 주변에 존재하는 암반과 궤도하부 여굴 채움 재료와의 동적상관관계에 대한 연구를 주로 분석하는 것이므로 터널 외부 1D이상으로 전달되는 진동은 무시하는 것으로 가정하였다.
  • 이를 열차 속도에 따른 반 정현파(Half-sine) 하중을 각 레일상면에 동시에 가하였다.
  • 터널 바닥부 지반이 균질하고 연속성 있는 지반으로 가정하였다.
  • 터널 주변 암반은 모두 3등급 경암으로 가정하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
여굴은 언제 발생하는가? 철도의 고속화에 따라 선형의 직선화와 함께 터널이 철도노선에 차지하는 비중은 급격하게 증가하였다. 터널 굴착 시 필연적으로 발생하고 있는 여굴은 터널의 안정성에 큰 영향을 미치고 있다. 또한 여굴은 시공의 경제성에도 매우 중요한 요소이기도 하다.
철도의 고속화에 따른 변화는 무엇인가? 철도의 고속화에 따라 선형의 직선화와 함께 터널이 철도노선에 차지하는 비중은 급격하게 증가하였다. 터널 굴착 시 필연적으로 발생하고 있는 여굴은 터널의 안정성에 큰 영향을 미치고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (29)

  1. T.N. Lee, D.H. Kim, Y.H. Seo (2002) A study on the development of the rock blastability classification and the methods for minimizing overbreak in tunnel, Journal of the Korean Society of Explosices and Blasting Engineering , 20(3), pp. 25-38. 

  2. S.D.Lee, N.Y.Kim (2001) Design guide of the optimum blasting paterns for minimizing overbreak, Journal of the Korea Expressway Corporation, 18, pp. 71-109. 

  3. Y.K.Kim, H.C.Kim, J.H.Yu (2003) A study on the drilling methods to reduce overbreak in tunnel blasting, Journal of the Korean Society of Explosices and Blasting Engineering, 21(2), pp. l-13. 

  4. S.W. Kim (1999) Measure of overbreak when tunnel drilling and blasting, Journal of the Korea Expressway Corporation, pp. 391-394. 

  5. Korea Rail Network Authority (2011) Rail design standard specification. 

  6. Y.N. Jung (2016) Prediction model of vibration propagation near vicinity ground around bridge pier considering soil properties and foundation, Master's Thesis, Paichai University. 

  7. S.I. Kim, J.W. Kwak, S.P. Jang (1999) Resonance phenomenon according to the relationship between span length of the bridge and effective beating interval of high-speed train, Journal of the Earthquake Engineering Society of Korea , 3(2), pp. 67 - 76 

  8. S.I. Kim, W.S. Jung, E.S. Choi (2005) A study on the optimal span length selection of conventional railway bridges considering resonance suppression, Journal of the Korean Society for Railway, 8(2), pp.137 - 144 

  9. J.W. Oh (2005) Dynamic behavior and resonance reduction of two-span continuous bridges for Korean train express, Journal of the Korean Geotechnical Society, 28(1), pp. 95-104. 

  10. J.H. Yoon, K.Y. Choi, K.S. Kwon, W.S. Jung (2012) Effect of crossbeam on dynamic characteristic and safety of PSC-I railway bridge, Journal of the Korean Society of Hazard Mitigation, 12(4), pp. 25 - 30 

  11. M.T. Bui (2009) Influence of some particle characteristics on the small strain response of granular materials, Ph.D dissertation, The University of Southampton. 

  12. H.B. Seed, R.T. Wong, I.M. Idriss, K. Tokimuatsu (1986) Moduli and damping factors for dynamic analyses of cohesionless Soils, J. Soil Mech. and Found. Div., ASCE, 112(11), pp. 1016-1032. 

  13. B.O. Hardin, V. Drenevich (1972) Shear modulus and damping in soil: design equation and curves, J. Soil Mech. and Found. Div., ASCE, 98(7) pp. 667-692. 

  14. B.O. Hardin, V. Drenevich (1972) Shear modulus and damping in soil: measurement and parameter effects, J. Soil Mech. and Found. Div., ASCE, 98(7), pp. 603-624. 

  15. H.B. Seed, R.T. Wong, I.M. Idriss, K. Tokimuatsu (1984) Moduli and damping factors for dynamic analyses of cohesionless soils, University of California, Earthquake Engineering Research Center Report, No. UCB/EERC-84/14. 

  16. M. Vucetic, R. Dobry (1991) Effect of soil plasticity on cyclic response, Journal of Geotechnical Engineering, 117(1), pp. 89-107. 

  17. M.B. Darendeli, K.H. II Stokoe (1997) Dynamic properties of soils subjected to the 1994 Northridge earthquake, University of Texas, Geotechnical Engineering Report GR97-5. 

  18. K. Ishihara (1996) Soil behavior in earthquake geotechnics, Oxford University Press, Oxford. 

  19. K. Ishibash, X. Zhang (1993) Unified dynamic shear moduli and damping ratios of sand and clay, Soils and Foundations, 33(1), pp. 182-191. 

  20. K. Kwon, D. Kim (2000) Alternative method of determining resilient modulus of subbase materials using fee-free Resonant Column Test, Journal Korean Society of Road Engineers, 2(2), pp. 149-161. 

  21. Cost per construction work standard (2017), Korea institute of civil engineering and building technology, http://www.codil.or.kr/ (Accessed 1 February 2017). 

  22. F.Y. Menq (2003) Dynamic properties of sandy and gravelly soils, PhD dissertation, The University of Texas at Austin. 

  23. T. Wichtmann, T. Triantafyllidis (2009) On the influence of the grain size distribution curve of quartz sand on th esamll strain shear modulus Gmax, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 135(10), pp. 1404-1418. 

  24. C. S Park (2008) Evaluation of resilient modulus and quality control procedure for railroad trackbeds based on dynamic properties, PhD dissertation, KyungHee University. 

  25. Y.J. Lim, S.H. Lee, J.W. Lee, H.J. Cho (2012) Evaluation of dynamic properties of crushed stones used as reinforced trackbed foundation materials using midsize resonant column test apparatus, Journal of the Korean Society for Railway, 5(5), pp.476-484. 

  26. D.S. Kim, Y.W. Choo (2001) Dynamic deformation characteristics of cohesionless soils in Korea using resonant column tests, Journal of the Korea Geotechnical Engineering, 17(5), pp. 115-128 

  27. H.B. Seed, I.M. Idriss (1970) Soil moduli and damping factors for dynamic response analyses, University of California Earthquake Engineering Research Center, Report No. EERC-70-10. 

  28. C.R. Choi (2012) Nonlinear Deformational characteristics of sedimentary rock mass for seismic analyses of tunnels, PhD dissertation, KyungHee University. 

  29. Korea Rail Network Authority (2015) Track maintenance guidelines. 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로