$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 광에너지를 활용한 선택적 산화그래핀의 환원
Selective Graphene Oxide Reduction Utilizing Photon Energy 원문보기

반도체디스플레이기술학회지 = Journal of the semiconductor & display technology, v.17 no.4, 2018년, pp.16 - 20  

신재수 (대전대학교 신소재공학과) ,  최은미 (한국표준과학연구원 소재에너지융합측정센터)

Abstract AI-Helper 아이콘AI-Helper

Graphene is attracting attention due to its outstanding properties as line material for next-generation semiconductor. Graphene pattern technology is essential to apply graphene line. Selective graphene oxide reduction as one of graphene pattern method does not require a substrate thereby a high fle...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문에서는 그래핀기반의 반도체 디바이스 제작을 위한 그래핀 옥사이드 패턴 방법 중 광촉매를 활용하는 광촉매 환원법과 광에너지를 활용하는 광-열 환원법에 대해 논의하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
그래핀을 성장시킨 후 직접적으로 그래핀을 커팅하여 패턴하는 방법의 문제점은? 그러나, 별도의 기판과 초점 이온 빔(focus ion beam, FIB)와 같은 고가의 레이저 장비가 필요하고, 전사 과정에서 그래핀의 주름이 발생될 수 있다.
그래핀을 패턴 하기 위한 방법은 무엇이 있는가? 그러나, 그래핀을 반도체의 배선 물질로 적용 하기 위해서는 그래핀의 전기적 특성을 제어하기 위한 패터닝(pattering) 기술이 요구된다. 그래핀을 패턴 하기 위한 방법은 크게 그래핀을 성장 시킨 후 그래핀을 커팅하는 방법과 그래핀 옥사이드 (graphene oxide, GO)를 부분적을 환원시켜 원하는 배선을 형성하는 방법 두 가지로 나눌 수 있다[6, 7]. 그래핀을 성장시킨 후 직접적으로 그래핀을 커팅하여 패턴하는 방법은 우수한 특성의 그래핀을 성장 시킬 수 있고 정밀 패턴이 가능하다는 장점이 있다[8, 9].
그래핀이 반도체 디바이스의 배선라인으로 적용될 경우 얻을 수 있는 기대효과는? 특히, 반도체 디바이스의 배선라인으로 적용될 경우 그래핀의 높은 캐리어 이동도(200,000 cm2/vs) 로 인하여 RC지연(RC delay) 저하를 기대 할 수 있으며, 2 X 108 A/cm2 의 높은 허용 전류 밀도(high maximum current density)를 가져 향상된 전자이주현상(electro migration, EM)에 대한 저항 특성 또한 기대할 수 있다[3]. 더하여, 그래핀 트랜지스터가 427GHz의 높은 차단 주파수(cut-off frequency, fT)을 기록하며 excellent radio-frequency characteristics 보여주었다[4].
질의응답 정보가 도움이 되었나요?

참고문헌 (28)

  1. Lee, J, H., "A Study of Dynamic Properties of Graphene-Nanoribbon Memory," Journal of the Semiconductor & Display Technology, Vol. 13, pp. 53-56, 2014. 

  2. Di, Bartolomeo, A., "Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction," Physics Reports, Vol. 606, pp. 1-58, 2016. 

  3. Murali, R., Yang, Y., Brenner, K., Beck, T., and Meindl, J, D., "Breakdown current density of graphene nanoribbons," Applied Physics Letters, Vol. 94(24), pp. 243114, 2009. 

  4. Cheng, R., Bai, J., Liao, L., Zhou, H., Chen, Y., Liu, L., and et al., "High-frequency self-aligned graphene transistors with transferred gate stacks," Proceedings of the National Academy of Sciences, Vol. 109(29), pp. 11588-92. 2012. 

  5. Feng, Z., Yu, C., Li, J., Liu, Q., He, Z., Song, X., and et al., "An ultra clean self-aligned process for high maximum oscillation frequency graphene transistors," Carbon, Vol. 75, pp. 249-54, 2014. 

  6. Yoo, J, H., Park, J, B., Ahn, S., and Grigoropoulos, C, P., "Laser-Induced Direct Graphene Patterning and Simultaneous Transferring Method for Graphene Sensor Platform," Small, Vol. 9(24), pp. 4269-75, 2013. 

  7. Kumar, P., Subrahmanyam, K., and Rao, C., "Graphene patterning and lithography employing laser/electron-beam reduced graphene oxide and hydrogenated graphene," Materials Express, Vol. 1(3), pp. 252-6, 2011. 

  8. Yong, K., Ashraf, A., Kang, P., and Nam, S., "Rapid stencil mask fabrication enabled one-step polymer-free graphene patterning and direct transfer for flexible graphene devices," Scientific reports, Vol. 6, pp. 24890, 2016. 

  9. Bell, D, C., Lemme, M, C., Stern, L, A., Williams, J, R., and Marcus, C, M., "Precision cutting and patterning of graphene with helium ions," Nanotechnology, Vol. 20(45), pp. 455301, 2009. 

  10. Cabrero-Vilatela, A., Weatherup, R, S., Braeuninger-Weimer, P., Caneva, S., and Hofmann , S., "Towards a general growth model for graphene CVD on transition metal catalysts," Nanoscale, Vol. 8(4), pp. 2149-58, 2016. 

  11. Bower, W., Head, W., Droop, G., Zan, R., Pattrick, R., Wincott, P., and et al., "High-resolution imaging of biotite using focal series exit wavefunction restoration and the graphene mechanical exfoliation method," Mineralogical Magazine, Vol. 79(2), pp. 337-44, 2015. 

  12. Novotny, Z., Netzer, F, P., and Dohnalek, Z., "Cerium Oxide Nanoclusters on Graphene/Ru (0001): Intercalation of Oxygen via Spillover," ACS Nano, Vol. 9(8), pp. 8617-26, 2015. 

  13. Choi, E., Chae, S, J., Kim, A., Kang, K, W., Oh, M, S., Kwon, S, H., and et al., "Hybrid Electrodes of Carbon Nanotube and Reduced Graphene Oxide for Energy Storage Applications," Journal of nanoscience and nanotechnology, Vol. 15(11), pp. 9104-9, 2015. 

  14. Choi, E., Kim, J., Chae, S, J., Kim, A., Pyo, S, G., and Yoon, S., "Performance of Graphene-Based Anode Using Chemically Reduced Nanocomposite Formation," Science of Advanced Materials, Vol. 7(12), pp. 2755-9, 2015. 

  15. Qi, Z, J., Rodriguez-Manzo, J, A., Hong, S, J., Park, Y, W., Stach, E, A., Drndic, M., and et al. editors., "Direct electron beam patterning of sub-5nm monolayer graphene interconnects," SPIE Advanced Lithography, Vol. 8680, pp. 86802F 1-6, 2013. 

  16. Tung, V, C., Allen, M, J., Yang, Y., and Kaner, R, B., "High-throughput solution processing of large-scale graphene," Nature Nanotechnology, Vol. 4(1), pp. 25-9, 2009. 

  17. Zhou, M., Wang, Y., Zhai, Y., Zhai, J., Ren, W., Wang, F., and et al., "Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films," Chemistry-A European Journal, Vol. 15(25), pp. 6116-20, 2009. 

  18. Fan, W., Lai, Q., Zhang, Q., and Wang, Y., "Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution," The Journal of Physical Chemistry C, Vol. 115(21), pp. 10694-701, 2011. 

  19. Kawahara, T., Konishi, Y., Tada, H., Tohge, N., Nishii, J., and Ito, S., "A Patterned TiO2 (Anatase)/TiO2 (Rutile) Bilayer-Type Photocatalyst: Effect of the Anatase/Rutile Junction on the Photocatalytic Activity," Angewandte Chemie, Vol. 114(15), pp. 2935-7, 2002. 

  20. Wang, P., Wang, J., Ming, T., Wang, X., Yu, H., Yu, J., and et al., "Dye-sensitization-induced visible-light reduction of graphene oxide for the enhanced TiO2 photocatalytic performance," ACS Applied Materials & Interfaces, Vol. 5(8), pp. 2924-9, 2013. 

  21. Radich, J, G., Krenselewski, A, L., Zhu, J., and Kamat, P, V., "Is graphene a stable platform for photocatalysis? Mineralization of reduced graphene oxide with UV-irradiated TiO2 nanoparticles," Chemistry of Materials, Vol. 26(15), pp. 4662-8, 2014. 

  22. Williams, G., Seger, B., and Kamat, PV., "TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide," ACS Nano, Vol. 2(7), pp. 1487-91, 2008. 

  23. Karampelas, I, H., Furlani, E, P., and editors., "Analysis of Pulsed-laser Plasmon-enhanced Photothermal Energy Transfer with Applications," The 16th Annual Graduate Student Research Symposium, 2013. 

  24. Hosokawa, Y., Yashiro, M., Asahi, T., and Masuhara, H., "Photothermal conversion dynamics in femtosecond and picosecond discrete laser etching of Cuphthalocyanine amorphous film analysed by ultrafast UV-VIS absorption spectroscopy," Journal of Photochemistry and Photobiology A: Chemistry, Vol. 142(2), pp. 197-207, 2001. 

  25. Cote, L, J., Cruz-Silva, R., and Huang, J., "Flash reduction and patterning of graphite oxide and its polymer composite," Journal of the American Chemical Society, Vol. 131(31), pp. 11027-32, 2009. 

  26. Zhou, Y., Bao, Q., Varghese, B., Tang, L, A, L., Tan, C, K., Sow, C, H., and et al., "Microstructuring of graphene oxide nanosheets using direct laser writing," Advanced Materials, Vol. 22(1), pp. 67-71, 2010. 

  27. Guo, H., Peng, M., Zhu, Z., and Sun, L., "Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction," Nanoscale, Vol. 5(19), pp. 9040-8, 2013. 

  28. Al-Hamry, A., Kang, H., Sowade, E., Dzhagan, V., Rodriguez, R., Muller, C., and et al., "Tuning the reduction and conductivity of solution-processed graphene oxide by intense pulsed light," Carbon, Vol. 102, pp. 236-44, 2016. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로