$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 만성 저온 스트레스 동물모델에서의 황련(黃連)의 항염증 효능 연구
Anti-inflammatory effects of Coptidis Rhizoma in chronic cold stress-exposed mice 원문보기

大韓本草學會誌 = The Korea journal of herbology, v.33 no.6, 2018년, pp.35 - 42  

최진규 (경희대학교 약학대학 약학과) ,  허유진 (경희대학교 일반대학원 경락의과학과) ,  이원일 (경희대학교 일반대학원 나노의약생명과학과) ,  김윤경 (원광대학교 약학대학 한약학과) ,  이태희 (가천대학교 한의과대학 방제학교실) ,  오명숙 (경희대학교 일반대학원 나노의약생명과학과)

Abstract AI-Helper 아이콘AI-Helper

Objectives : The aim of this study was to investigate whether the extract of Coptidis Rhizoma inhibits inflammation in chronic cold stress (CCS)-exposed mice or not. Methods : Coptidis Rhizoma extract (CRE) was made by reflux with distilled water. Male ICR mice (7 weeks old) were divided randomly in...

주제어

표/그림 (3)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 황련이 만성 저온 스트레스 유도 동물모델에서의 염증 관련 인자 조절 효능을 평가하고자 하였다. 따라서, 황련 추출물을 이용하여 CCS에 노출된 마우스의 혈액 내 cortisol 농도 및 뇌 시상하부 내 pro-inflammatory 단백질 발현 변화를 enzyme-linked immunosorbent (ELISA) 또는 western blot 분석을 통하여 다음과 같은 결과를 얻었기에 보고하는 바이다.
  • 본 연구에서는 지속적인 저온 스트레스에 노출되어 나타나는 염증 반응에 대한 황련의 억제 효능을 알아보고자 하였다.
  • 본 연구에서는 황련 추출물(CRE)의 만성 저온 스트레스 유도 염증 억제 효능 연구를 수행하였고 다음과 같은 결론을 얻었다.
  • 본 연구에서는 황련이 만성 저온 스트레스 유도 동물모델에서의 염증 관련 인자 조절 효능을 평가하고자 하였다. 따라서, 황련 추출물을 이용하여 CCS에 노출된 마우스의 혈액 내 cortisol 농도 및 뇌 시상하부 내 pro-inflammatory 단백질 발현 변화를 enzyme-linked immunosorbent (ELISA) 또는 western blot 분석을 통하여 다음과 같은 결과를 얻었기에 보고하는 바이다.
  • 이상의 연구에서 황련은 cold stress 유도 동물모델에서 혈중 cortisol 농도 증가 및 뇌 시상하부에서의 HSP70, c-fos, NF-kB, PGE 등의 염증 관련 단백질의 과발현을 효과적으로 억제하는 것을 확인하여 지속적인 外寒(만성 저온 스트레스) 유도 체내 염증에 대한 황련의 조절 효능을 과학적으로 규명하였음을 밝히는 바이다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
지속적인 cold stress가 이어지면 Cortisol의 분비는 어떻게 되는가? 외부 온도변화에 수반되는 cold stress는 glucocorticoid 분비를 유도하여 포도당 분해를 통한 혈당 상승을 통해 체내 항상성을 유지한다28) . Cortisol은 부신피질에서 분비되는 주요 glucocorticoid 호르몬으로서 HPA에 의해 조절되며 외부 스트레스에 대한 체내 항상성 조절에 기여하나, 지속적인 스트레스에 노출되면 cortisol이 과다 분비되어 glucocorticoid 수용체 손상에 따른 염증 반응이 나타난다29) . 이는 cortisol이 glucocorticoid 수용체/heat shock 단백질 복합체에 결합 후 HSP70, c-fos, NF-kB 등의 pro-inflammatory 전사 인자들의 활성화 및 분비를 유도하는 등 스트레스로 인한 세포 내 신호전달체계에서 중요한 역할을 담당하고 있는 것과 관련성이 높다30),31) .
CCS는 어떠한 증상을 유발하는가? 만성적인 cold stress (chronic cold stress; CCS)는 체온 유지를 위해 열을 발생시키고 대사활동을 촉진시키지만, 이러한 상태가 계속되면 체내 전반적인 염증 및 자율신경계의 문제를 야기하여 각종 질병을 유도하기도 한다1),2) . CCS는 혈액 내 cortisol 및 뇌 시상하부 내 nuclear factor kappa-light-chainenhancer of activated B cells (NF-kB)와 같은 proinflammatory factors의 발현 증가를 유도하여 뇌 시상하부-뇌하수체-부신 축(hypothalamic-pituitary-adrenal axis; HPA)을 활성화시킴으로써 결과적으로 체온 감소, 고혈압, 불안 증상을 유발한다고 알려져 있으며3-6) , CCS가 랫트의 혈액 및 뇌 시상하부와 피질 내 pro-inflammatory cytokines의 급속한 증가와 학습 및 인지능력 감퇴를 유도하며, 이는 CCS로 인한 HPA 조절 능력의 이상과 밀접한 상관성이 있음을 밝힌 바 있다7) . 또한 Kim 및 Makino 등1),8)은 CCS 유도 HPA 매개 염증 및 산화 스트레스에 대한 한약의 억제 효능을 실험적으로 증명하여 한약의 CCS 유도 염증 조절 가능성을 제시하였다.
황련(黃連)은 무엇인가? 황련(黃連)은 미나리아재비과에 속하는 다년생 본초인 황련(Coptis japonica Makino), 중국황련(C. chinensis Franch.), 삼각엽황련(C. deltoidea C. Y. Cheng et Hsiao), 운련(C. teeta Wallich)의 뿌리를 제거한 뿌리줄기를 지칭하며 알칼로이드 계열의 berberine, coptisine 등이 주성분으로 함유되어 있다12) . 본초학적으로 황련은 주로 淸熱燥濕, 瀉火解毒의 효능을 가지며, 다양한 모델에서 황련 추출물과 함유성분의 항염증 효능이 입증된 바 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (47)

  1. Makino T, Kato K, Mizukami H. Processed aconite root prevents cold-stress-induced hypothermia and immuno-suppression in mice. Biol Pharm Bull. 2009 ; 32 : 1741-8. 

  2. Wang X, Che H, Zhang W, Wang J, Ke T, Cao R, Meng S, Li D, Weiming O, Chen J, Luo W. Effects of Mild Chronic Intermittent Cold Exposure on Rat Organs. Int J Biol Sci. 2015 ; 11 : 1171-80. 

  3. Ukropec J, Anunciado RP, Ravussin Y, Hulver MW, Kozak LP. UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1-/- mice. J Biol Chem. 2006 ; 281 : 31894-908. 

  4. Westfall TC, Yang CL, Chen X, Naes L, Vickery L, Macarthur H, Han S. A novel mechanism prevents the development of hypertension during chronic cold stress. Auton Autacoid Pharmacol. 2005 ; 25 : 171-7. 

  5. Nishikawa H, Hata T, Itoh E, Funakami Y. A role for corticotropin-releasing factor in repeated cold stress-induced anxiety-like behavior during forced swimming and elevated plus-maze tests in mice. Biol Pharm Bull. 2004 ; 27 : 352-6. 

  6. Ma S, Morilak DA. Chronic intermittent cold stress sensitises the hypothalamic-pituitary-adrenal response to a novel acute stress by enhancing noradrenergic influence in the rat paraventricular nucleus. J Neuroendocrinol. 2005 ; 17 : 761-9. 

  7. Girotti M, Donegan JJ, Morilak DA. Chronic intermittent cold stress sensitizes neuro-immune reactivity in the rat brain. Psychoneuroendocrinology. 2011 ; 36 : 1164-74. 

  8. Kim HG, Lee JS, Han JM, Lee JS, Choi MK, Son SW, Kim YK, Son CG. Myelophil attenuates brain oxidative damage by modulating the hypothalamus-pituitary-adrenal (HPA) axis in a chronic cold-stress mouse model. J Ethnopharmacol. 2013 ; 148 : 505-14. 

  9. Jeon BH. A Bibliographic Study on the Pathological Concept of Han(Cold : 寒) - Concentration Upon the Nai Kyung -. J Physiol & Pathol Korean Med. 1988 ; 3 : 107-22. 

  10. Zhang J. Lei Jing. Ren Min Wei Sheng Chu Ban She. 1965. 

  11. Zhang Z. Shang-Han Lun. Hanmi medical publishing co. 2011. 

  12. Seo BI, Kwon DY, Choi HY, Lee JH, Oh MS, Bu YM. Medicinal Herbology. 8th rev. ed. Seoul : YounglimSa. 2012 : 220-4. 

  13. Choi YY, Kim MH, Cho IH, Kim JH, Hong J, Lee TH, Yang WM. Inhibitory effect of Coptis chinensis on inflammation in LPS-induced endotoxemia. J Ethnopharmacol. 2013 ; 149 : 506-12. 

  14. Bose S, Jeon S, Eom T, Song MY, Kim H. Evaluation of the in vitro and in vivo protective effects of unfermented and fermented Rhizoma coptidis formulations against lipopolysaccharide insult. Food Chem. 2012 ; 135 : 452-9. 

  15. Kim JM, Jung HA, Choi JS, Lee NG. Identification of anti-inflammatory target genes of Rhizoma coptidis extract in lipopolysaccharide-stimulated RAW264.7 murine macrophage-like cells. J Ethnopharmacol. 2010 ; 130 : 354-62. 

  16. Enk R, Ehehalt R, Graham JE, Bierhaus A, Remppis A, Greten HJ. Differential effect of Rhizoma coptidis and its main alkaloid compound berberine on TNF-alpha induced NFkappaB translocation in human keratinocytes. J Ethnopharmacol. 2007 ; 109 : 170-5. 

  17. Cui H, Cai Y, Wang L, Jia B, Li J, Zhao S, Chu X, Lin J, Zhang X, Bian Y, Zhuang P. Berberine Regulates Treg/Th17 Balance to Treat Ulcerative Colitis Through Modulating the Gut Microbiota in the Colon. Front Pharmacol. 2018 ; 9 : 571. 

  18. Lee IA, Hyun YJ, Kim DH. Berberine ameliorates TNBS-induced colitis by inhibiting lipid peroxidation, enterobacterial growth and NF- ${\kappa}B$ activation. Eur J Pharmacol. 2010 ; 648 : 162-70. 

  19. Wang Z, Chen Z, Chen T, Yi T, Zheng Z, Fan H, Chen Z. Berberine Attenuates Inflammation Associated with Delayed-Type Hypersensitivity via Suppressing Th1 Response and Inhibiting Apoptosis. Inflammation. 2017 ; 40 : 221-31. 

  20. Fu K, Lv X, Li W, Wang Y, Li H, Tian W, Cao R. Berberine hydrochloride attenuates lipopolysaccharide-induced endometritis in mice by suppressing activation of NF- ${\kappa}B$ signal pathway. Int Immunopharmacol. 2015 ; 24 : 128-32. 

  21. Lin K, Liu S, Shen Y, Li Q. Berberine attenuates cigarette smoke-induced acute lung inflammation. Inflammation. 2013 ; 36 : 1079-86. 

  22. Feng M, Kong SZ, Wang ZX, He K, Zou ZY, Hu YR, Ma H, Li XG, Ye XL. The protective effect of coptisine on experimental atherosclerosis ApoE-/- mice is mediated by MAPK/NF- ${\kappa}B$ -dependent pathway. Biomed Pharmacother. 2017 ; 93 : 721-9. 

  23. Zhou K, Hu L, Liao W, Yin D, Rui F. Coptisine Prevented IL- ${\beta}$ -Induced Expression of Inflammatory Mediators in Chondrocytes. Inflammation. 2016 ; 39 : 1558-65. 

  24. Moon M, Huh E, Lee W, Song EJ, Hwang DS, Lee TH, Oh MS. Coptidis Rhizoma Prevents Heat Stress-Induced Brain Damage and Cognitive Impairment in Mice. Nutrients. 2017 ; 9(10) : pii: E1057. 

  25. Kim W, Lee W, Choi JG, Ju IG, Kim YK, Lee TH, Oh MS. Inhibitory effects of Aconiti Lateralis Radix Preparata on chronic intermittent cold-induced inflammation in the mouse hypothalamus. J Ethnopharmacol. 2018 ; 215 : 27-33. 

  26. Lee W, Moon M, Kim HG, Lee TH, Oh MS. Heat stress-induced memory impairment is associated with neuroinflammation in mice. J Neuroinflammation. 2015 ; 12 : 102. 

  27. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 ; 72 : 248-54. 

  28. Paakkonen T, Leppaluoto J. Cold exposure and hormonal secretion: a review. Int J Circumpolar Health. 2002 ; 61 : 265-76. 

  29. Silverman MN, Sternberg EM. Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci. 2012 ; 1261 : 55-63. 

  30. O'Connor TM, O'Halloran DJ, Shanahan F. The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia. QJM-INT J MED. 2000 ; 93 : 323-33. 

  31. Busillo JM, Cidlowski JA. The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol Metab. 2013 ; 24 : 109-19. 

  32. Zhao FQ, Zhang ZW, Wang C, Zhang B, Yao HD, Li S, Xu SW. The role of heat shock proteins in inflammatory injury induced by cold stress in chicken hearts. Cell Stress Chaperones. 2013 ; 18 : 773-83. 

  33. Simpson CW, Ruwe WD, Myers RD. Prostaglandins and hypothalamic neurotransmitter receptors involved in hyperthermia: a critical evaluation. Neurosci Biobehav Rev. 1994 ; 18 : 1-20. 

  34. Fyda DM, Cooper KE, Veale WL. Contribution of brown adipose tissue to central PGE1-evoked hyperthermia in rats. Am J Physiol. 1991 ; 260 : 59-66. 

  35. Neulen J, Zahradnik HP, Flecken U, Breckwoldt M. The effect of cortisol on the synthesis of prostaglandins (PGF2 alpha, PGE2) by human endometrial fibroblasts in vitro with and without addition of estradiol-17 beta or progesterone. Prostaglandins. 1989 ; 37 : 587-95. 

  36. Narumiya S. Physiology and pathophysiology of prostanoid receptors. Proc Jpn Acad Ser B Phys Biol Sci. 2007 ; 83 : 296-319. 

  37. Chen Y, Hughes-Fulford M. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells. Br J Cancer. 2000 ; 82 : 2000-6. 

  38. Yen JH, Kocieda VP, Jing H, Ganea D. Prostaglandin E2 induces matrix metalloproteinase 9 expression in dendritic cells through two independent signaling pathways leading to activator protein 1 (AP-1) activation. J Biol Chem. 2011 ; 286 : 38913-23. 

  39. Zhang Z, Zhang H, Li B, Meng X, Wang J, Zhang Y, Yao S, Ma Q, Jin L, Yang J, Wang W, Ning G. Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun. 2014 ; 5 : 5493. 

  40. Quan K, Li S, Wang D, Shi Y, Yang Z, Song J, Tian Y, Liu Y, Fan Z, Zhu W. Berberine Attenuates Macrophages Infiltration in Intracranial Aneurysms Potentially Through FAK/Grp78/UPR Axis. Front Pharmacol. 2018 ; 9 :565. 

  41. Chen HB, Luo CD, Liang JL, Zhang ZB, Lin GS, Wu JZ, Li CL, Tan LH, Yang XB, Su ZR, Xie JH, Zeng HF. Anti-inflammatory activity of coptisine free base in mice through inhibition of NF- ${\kappa}B$ and MAPK signaling pathways. Eur J Pharmacol. 2017 ; 811 : 222-31. 

  42. Wu J, Zhang H, Hu B, Yang L, Wang P, Wang F, Meng X. Coptisine from Coptis chinensis inhibits production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. Eur J Pharmacol. 2016 ; 780 : 106-14. 

  43. Zou ZY, Hu YR, Ma H, Wang YZ, He K, Xia S, Wu H, Xue DF, Li XG, Ye XL. Coptisine attenuates obesity-related inflammation through LPS/TLR-4-mediated signaling pathway in Syrian golden hamsters. Fitoterapia. 2015 ; 105 : 139-46. 

  44. Shin NR, Ko JW, Park SH, Cho YK, Oh SR, Ahn KS, Ryu JM, Kim JC, Seo CS, Shin IS. Protective effect of HwangRyunHaeDok-Tang water extract against chronic obstructive pulmonary disease induced by cigarette smoke and lipopolysaccharide in a mouse model. J Ethnopharmacol. 2017 ; 200 : 60-5. 

  45. Zhang Q, Ma YM, Wang ZT, Wang CH. Differences in pharmacokinetics and anti-inflammatory effects between decoction and maceration of Sanhuang Xiexin Tang in rats and mice. Planta Med. 2013 ; 79 : 1666-73. 

  46. Jiang JF, Wang YG, Hu J, Lei F, Kheir MM, Wang XP, Chai YS, Yuan ZY, Lu X, Xing DM, Du F, Du LJ. Novel effect of berberine on thermoregulation in mice model induced by hot and cold environmental stimulation. PLoS One. 2013 ; 8 : e54234. 

  47. Han SY, Kang HJ, Choi ES, Lee KN, Lee TH, Kime YK. Comparative study of hwangnyeonhaedok-tang and geongangbuja-tang on the plasma hormones level in mice rxposed to cold stress. Herb Formula Sci. 2013 ; 21(2) : 144-57. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로