$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색도움말
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

통합검색

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

논문 상세정보

리튬 이온 배터리용 양극 및 음극 재료의 최근 동향

Recent Advances in Cathode and Anode Materials for Lithium Ion Batteries

초록
용어

논문에서 용어와 풀이말을 자동 추출한 결과로,
시범 서비스 중입니다.

리튬 이온 배터리는 휴대용 전자 제품, 전기 자동차그리드 규모의 에너지 저장 장치 등과 같이 일상 생활에서 다양한 용도로 널리 사용되고 있다. 최근 높은 에너지 밀도, 경량 및 저비용과 같은 상업적 요구를 만족하는 리튬 이온 배터리 전극 소재 개발을 위하여 상당한 노력이 진행되어 오고 있다. 이 총설에서는 리튬 이온 배터리 양극 및 음극 재료의 원리와 최근 연구 동향을 요약하였으며, 특히 전극 소재의 설계 및 고급 특성화 기술을 강조하였다.

Abstract

Lithium ion batteries have been broadly used in various applications to our daily life such as portable electronics, electric vehicles and grid-scale energy storage devices. Significant efforts have recently been made on developing electrode materials for lithium ion batteries that meet commercial needs of the high energy density, light weight and low cost. In this review, we summarize the principles and recent research advances in cathode and anode materials for lithium ion batteries, and particularly emphasize electrode material designs and advanced characterization techniques.

저자의 다른 논문

참고문헌 (67)

  1. 1. M. Broussely, P. Biensan, and B. Simon, Lithium insertion into host materials: the key to success for Li ion batteries, Electrochim. Acta, 45, 3-22 (1999). 
  2. 2. N. Nitta, F. Wu, and J. T. Lee, Li-ion battery materials: present and future, Mater. today, 18, 252-264 (2015). 
  3. 3. M. S. Whittingham and F. R. Gamble Jr, The lithium intercalates of the transition metal dichalcogenides, Mater. Res. Bull., 10, 363-371 (1975). 
  4. 4. M. S. Whittingham, Electrical Energy Storage and Intercalation Chemistry, Science, 192, 1126-1127 (1976). 
  5. 5. B. M. L. Rao, D. J. Eustace, and J. A. Shropshire, The Li/ $TiS_2$ cell with LiSCN electrolyte, J. Appl. Electrochem., 10, 757-763 (1980). 
  6. 6. T. Ohzuku and A. Ueda, Solid-state redox reactions of $LiCoO_2$ ( $R_{3}^{-}m$ ) for 4 volt secondary lithium cells, J. Electrochem. Soc., 141, 2972-2977 (1994). 
  7. 7. J. N. Reimers and J. R. Dahn, Electrochemical and in situ x-ray diffraction studies of lithium intercalation in $Li_xCoO_2$ , J. Electrochem. Soc., 139, 2091-2097 (1992). 
  8. 8. A. VanderVen, M. K. Aydinol, and G. Ceder, First-principles evidence for stage ordering in $Li_xCoO_2$ , J. Electrochem. Soc., 145, 2149-2155 (1998). 
  9. 9. X. Dai, A. Zhou, J. Xu, B. Yang, L. Wang, and J. Li, Superior electrochemical performance of $LiCoO_2$ electrodes enabled by conductive $Al_2O_3$ -doped ZnO coating via magnetron sputtering, J. Power Sources, 298, 114-122 (2015). 
  10. 10. S. Myung, N. Kumagai, S. Komaba, and H. Chung, Effects of Al doping on the microstructure of $LiCoO_2$ cathode materials, Solid State Ionics, 139, 47-56 (2001). 
  11. 11. S. Madhavi and Rao GS, Effect of Cr dopant on the cathodic behavior of $LiCoO_2$ , Electrochimic. Acta, 48, 219-226 (2002). 
  12. 12. S. Huang, Z. Wen, X. Yang, Z. Gu, and X. Xu, Improvement of the high-rate discharge properties of $LiCoO_2$ with the Ag additives, J. Power Sources, 148, 72-77 (2005). 
  13. 13. J. R. Dahn, U. V. Sacken, and C. A. Michal, Structure and electrochemistry of $Li_{1{\pm}y}NiO_2$ and a new $Li_2NiO_2$ phase with the Ni $(OH)_2$ structure, Solid State Ionics, 44, 87-97 (1990). 
  14. 14. M. Broussely, F. Perton, P. Biensan, J. M. Bodet, J. Labat, A. Lecerf, C. Delmas, A. Rougier, and J. P. Peres, $Li_xNiO_2$ , a promising cathode for rechargeable lithium batteries, J. Power Sources, 54, 109-114 (1995). 
  15. 15. S. P. Lin, K. Z. Fung, Y. M. Hon, and M. H. Hon, Effect of Al Addition on Formation of Layer-Structured $LiNiO_2$ , J. Solid State Chem., 167, 97-106 (2002). 
  16. 16. Y. Nishida, K. Nakane, and T. Satoh, Synthesis and properties of gallium-doped $LiNiO_2$ as the cathode material for lithium secondary batteries, J. Power Sources, 68, 561-564 (1997). 
  17. 17. A. R. Armstrong and P. G. Bruce, Synthesis of layered $LiMnO_2$ as an electrode for rechargeable lithium batteries, Nature, 381, 499-500 (1996). 
  18. 18. A. R. Armstrong, A. D. Robertson, and P. G. Bruce, Structural transformation on cycling layered $Li(Mn_{1-y}Co_y)O_2$ cathode materials, Electrochimi. Acta, 45, 285-294 (1999). 
  19. 19. S. R. Gowda, K. G. Gallagher, J. R. Croy, M. Bettge, M. M. Thackeray, and M. Balasubramanian, Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells, Phys. Chem. Chem. Phys., 16, 6898-6902 (2014). 
  20. 20. X. Han, M. Ouyang, L. Lu, J. Li, Y. Zheng, and Z. Li, A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification, J. Power Sources, 251, 38-54 (2014). 
  21. 21. F. Schipper, E. M. Erickson, C. Erk, J. Y. Shin, F. F. Chesneau, and D. Aurbach, Review-recent advances and remaining challenges for lithium ion battery cathodes, J. Electrochem. Soc., 164 A6220-A6228 (2017). 
  22. 22. D. Y. Wan, Z. Y. Fan, Y. X. Dong, E.baasanjav, H. B. Jun, B. Jin, E. M. Jin, and S. M. Jeong, Effect of Metal (Mn, Ti) Doping on NCA Cathode Materials for Lithium Ion Batteries, J. Nanomater., 2018, 8082502 (2018). 
  23. 23. M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, Lithium insertion into manganese spinels, Mat. Res. Bull., 18, 461-472 (1983). 
  24. 24. G. Amatucci and J. M. Tarascon, Optimization of Insertion Compounds Such as $LiMn_2O_4$ for Li-Ion Batteries, J. Electrochem. Soc., 149, K31-K46 (2002). 
  25. 25. A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. Goodenough, Effect of Structure on the $Fe^{3+}/Fe^{2+}$ Redox Couple in Iron Phosphates, J. Electrochem. Soc., 144, 1609-1613 (1997). 
  26. 26. P. Axmann, C. Stinner, M. Wohlfahrt-Mehrens, A. Mauger, and F. Gendron, C. M. Julien, Nonstoichiometric $LiFePO_4$ : Defects and Related Properties, Chem. Mater., 21, 1636-1644 (2009). 
  27. 27. J. Chen, M. J. Vacchio, S. Wang, N. Chernova, P. Y. Zavalij, and M. S. Whittingham, The hydrothermal synthesis and characterization of olivine and related compounds for electrochemical applications, Solid State Ionics, 178, 1676-1693 (2008). 
  28. 28. T. Shiratsuchi, S. Okada, T. Doi, and J. I. Yamaki, Cathodic performance of $LiMn_{1-x}M_xPO_4$ (M Ti, Mg and Zr) annealed in an inert atmosphere, Electrochim. Acta, 54, 3145-3151 (2009). 
  29. 29. V. H. Nguyen, D. H. Lee, S. Y. Baek, H. B. Gu, and Y. H. Kim, Silicon and its effect on the electrochemical properties of $Li_3V_2(PO_4)_3$ cathode material, Ceram. Int., 44, 12504-12510 (2018). 
  30. 30. M. Chen, L. L. Shao, H. B. Yang, T. Z. Ren, G. Du, and Z. Y. Yuan, Vanadium-doping of $LiFePO_4$ /carbon composite cathode materials synthesized with organophosphorus source, Electrochim. Acta, 167, 278-286 (2015). 
  31. 31. J. C. Zheng, B. Zhang, and Z. H. Yang, Novel synthesis of $LiVPO_4F$ cathode material by chemical lithiation and postannealing, J. Power Sources, 202, 380-383 (2012). 
  32. 32. R. Domink, M. Bele, A. Kokalj, M. Gaberscek, and J. Jamnik, $Li_2MnSiO_4$ as a potential Li-battery cathode material, J. Power Sources, 174, 457-461 (2007). 
  33. 33. Z. L. Gong, Y. X. Li, and Y. Yang, Synthesis and electrochemical performance of $Li_2CoSiO_4$ as cathode material for lithium ion batteries, J. Power Sources, 174, 524-527 (2007). 
  34. 34. A. Sobkowiak, M. R. Roberts, R. Younesi, T. Ericsson, L. Haggstrom, C. W. Tai, A. M. Andersson, K. Edstrom, T. Gustafsson, and F. Bjorefors, Understanding and Controlling the Surface Chemistry of $LiFeSO_4F$ for an Enhanced Cathode Functionality, Chem. Mater., 25, 3020-3029 (2013). 
  35. 35. J. Li, L. Xing, Z. Wang, W. Tu, X. Yang, X. Yang, Y. Lin, Y. Liao, M. Xu, and W. Li, Insight into the capacity fading of layered lithium-rich oxides and its suppression via a film-forming electrolyte additive, RSC Adv., 8, 25794-25801 (2018). 
  36. 36. Q. Wang, Z. Wen, J. Jin, J. Guo, X. Huang, J. Yang, and C. Chen, A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries, Chem. Commun., 52, 1637-1640 (2016). 
  37. 37. X. Zhang, W. Wang, A. Wang, Y. Huang, K. Yuan, Z. Yu, J. Qiu, and Y. Yang, Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery, J. Mater. Chem. A, 2, 11660-11665 (2014). 
  38. 38. M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater., 10, 725-763 (1998). 
  39. 39. K. Persson, V. A. Sethuraman, L. J. Hardwick, Y. Hinuma, Y. S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki, and G. Ceder, Lithium diffusion in graphitic carbon, J. Phys. Chem. Lett., 1, 1176-1180 (2010). 
  40. 40. J. Liu and D. Xue, Hollow Nanostructured Anode Materials for Li-Ion Batteries, Nanoscale Res. Lett., 5, 1525-1534 (2010). 
  41. 41. B. J. Landi, M. J. Ganter, C. D. Cress, R. A. Dileo, and R. P. Yaffaelle, Carbon nanotubes for lithium ion batteries, Energy Environ. Sci., 2, 638-654 (2009). 
  42. 42. C. C. Li and Y. W. Wang, Importance of binder compositions to the dispersion and electrochemical properties of water-based $LiCoO_2$ cathodes, J. Power Sources, 227, 204-210 (2013). 
  43. 43. S. Boyanov, K. Annou, C. Villevieille, M. Pelosi, D. Zitoun, and L. Monconduit, Nanostructured transition metal phosphide as negative electrode for lithium-ion batteries, Ionics, 14, 183-190 (2008). 
  44. 44. W. Wang, Z. Favors, C. Li, C. Liu, R. Ye, C. Fu, K. Bozhilov, J. Guo, M. Ozkan, and C. S. Ozkan, Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries, Sci Rep., 7, 44838 (2017). 
  45. 45. C. de las Casas and W. Li, A review of application of carbon nanotubes for lithium ion battery anode material, J. Power Sources, 208, 74-85 (2012). 
  46. 46. Y. Liu, V.I. Artyukhov, M. Liu, A. R. Harutyunyan, and B.I. Yakobson, Feasibility of lithium storage on graphene and its derivatives, J. Phys. Chem. Lett., 4, 1737-1742 (2013). 
  47. 47. J. Yang, M. Winter, and J. O. Besenhard, Small particle size multiphase Li-alloy anodes for lithium-ion batteries, Solid State Ionics 90, 281-287 (1996). 
  48. 48. R. A. Huggins and B. A. Boukamp, US Patent 4,436,796 (1984). 
  49. 49. C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chem. Soc. Rev., 39, 3115-3141 (2010). 
  50. 50. E. N. Attia, F. M. Hassan, M. Li, R. Batmaz, A. Elkamel, and Z. Chen, Tailoring the chemistry of blend copolymers boosting the electrochemical performance of Si-based anodes for lithium ion batteries, J. Mater. Chem. A, 5, 24159-24167 (2017). 
  51. 51. X. Li and C. Wang, Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application, J. Mater. Chem. A, 1, 165-182 (2013). 
  52. 52. J. D. Ocon, J. K. Lee, and J. Lee, High energy density germanium anodes for next generation lithium ion batteries, Appl. Chem. Eng., 25, 1-13 (2014). 
  53. 53. J. He, Y. Wei, T. Zhai, and H. Li, Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries, Mater. Chem. Front., 2, 437-455 (2018). 
  54. 54. C. J. Wen, B. A. Boukamp, R. A. Huggisn, and W. Weppner, Thermodynamic and Mass Transport Properties of "LiAl", J. Electrochem. Soc., 126, 2258-2266 (1979). 
  55. 55. R. A. Huggins, Advanced Batteries. Materials Science Aspects, Springer US, MA, USA (2009). 
  56. 56. M. G. Jeong, M. Islam, H. L. Du, Y. S. Lee, H.H. Sun, W. Choi, J. K. Lee, K. Y. Chung, and H. G. Jung, Nitrogen-doped carbon coated porous silicon as high performance anode material for lithium-ion batteries, Electrochim. Acta, 209, 299-307 (2016). 
  57. 57. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Tin-based amorphous oxide: A High-capacity lithium-ion-storage material, Science, 276, 1395-1397 (1997). 
  58. 58. X. Li and C. Wang, Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application, J. Mater. Chem. A, 1, 165-182 (2013). 
  59. 59. M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou, and H. K. Liu, Preparation and ectrochemical properties of $SnO_2$ nanowires for application in lithium-ion batteries, Angew. Chem., 119, 764-767 (2007). 
  60. 60. L. Yu, D. Cai, H. Wang, and M. M. Titirici, Hydrothermal synthesis of $SnO_2$ and $SnO_2@C$ nanorods and their application as anode materials in lithium-ion batteries, RSC Adv., 3, 17821-17826 (2013). 
  61. 61. P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki, $TiO_2$ nanotubes and their application in dye-sensitized solar cells, Nanoscale, 2, 45-59 (2010). 
  62. 62. Y. Zhang, Q. Fu, Q. Xu, X. Yan, R. Zhang, Z. Duo, Y. Wei, D. Zhang, and G. Chen, Improved electrochemical performance of nitrogen doped $TiO_2$ -B nanowires as anode materials for Li-ion batteries, Nanoscale, 7, 12215-12224 (2015). 
  63. 63. J. Wang, X. M. Liu, H. Yang, and X. D. Shen, Characterization and electrochemical properties of carbon-coated $Li_4Ti_5O_{12}$ prepared by a citric acid sol-gel method, J. Alloys Compd., 509, 712-718 (2011). 
  64. 64. M. Z. Kong, W. L. Wang, J. Y. Park, and H. B. Gu, Synthesis and electrochemical properties of a carbon-coated spinel $Li_4Ti_5O_{12}$ anode material using soybean oil for lithium-ion batteries, Mater. Lett., 146, 12-15 (2015). 
  65. 65. Y. Zhu, Q. Wang, X. Zhao, and B. Yuan, Cross-linked porous ${\alpha}$ - $Fe_2O_3$ nanorods as high performance anode materials for lithium ion batteries, RSC Adv., 6, 97385-97390 (2016). 
  66. 66. Y. Qin, Q. Li, J. Xu, X. Wang, G. Zhao, C. Liu, X. Yan. Y. Long, S. Yan, and S. Li, CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries, Electrochim. Acta, 224, 90-95 (2017). 
  67. 67. T. Perez, R. L. Lopez, J. L. Nava, I. Lazaro, G. Velasco. R. Cruz, and I. Rodriguez, Electrochemical oxidation of cyanide on 3D Ti- $RuO_2$ anode using a filter-press electrolyzer, Chemosphere, 177, 1-6 (2017). 

문의하기 

궁금한 사항이나 기타 의견이 있으시면 남겨주세요.

Q&A 등록

원문보기

원문 PDF 다운로드

  • ScienceON :
  • AccessON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

오픈액세스(OA) 유형

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 연관된 기능

DOI 인용 스타일

"" 핵심어 질의응답