$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Immune-Enhancing Effect of Nanometric Lactobacillus plantarum nF1 (nLp-nF1) in a Mouse Model of Cyclophosphamide-Induced Immunosuppression 원문보기

Journal of microbiology and biotechnology, v.28 no.2, 2018년, pp.218 - 226  

Choi, Dae-Woon (Food Biotechnology Program, Korea University of Science and Technology) ,  Jung, Sun Young (Food Biotechnology Program, Korea University of Science and Technology) ,  Kang, Jisu (Food Biotechnology Program, Korea University of Science and Technology) ,  Nam, Young-Do (Food Biotechnology Program, Korea University of Science and Technology) ,  Lim, Seong-Il (Division of Strategic Food Research, Korea Food Research Institute) ,  Kim, Ki Tae (Biogenics Korea Co. Ltd.) ,  Shin, Hee Soon (Food Biotechnology Program, Korea University of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

Nanometric Lactobacillus plantarum nF1 (nLp-nF1) is a biogenics consisting of dead L. plantarum cells pretreated with heat and a nanodispersion process. In this study, we investigated the immune-enhancing effects of nLp-nF1 in vivo and in vitro. To evaluate the immunostimulatory effects of nLp-nF1, ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • IgG can interact with macrophages, neutrophils, and natural killer cells, leading to activation of these cells [33]. In this study, we assessed serum IgG levels as an indicator of immune stimulation or immune enhancement. To investigate the immune-enhancing effect of nLp-nF1, the immunosuppressed mouse model (CPP-induced) was used.
본문요약 정보가 도움이 되었나요?

참고문헌 (47)

  1. Schiavoni G, D'Amato G, Afferni C. 2017. The dangerous liaison between pollens and pollution in respiratory allergy. Ann. Allergy Asthma Immunol. 118: 269-275. 

  2. LaKind JS, Overpeck J, Breysse PN, Backer L, Richardson SD, Sobus J, et al. 2016. Exposure science in an age of rapidly changing climate: challenges and opportunities. J. Expo. Sci. Environ. Epidemiol. 26: 529-538. 

  3. Cesarone MR, Belcaro G, Di Renzo A, Dugall M, Cacchio M, Ruffini I, et al. 2007. Prevention of influenza episodes with colostrum compared with vaccination in healthy and high-risk cardiovascular subjects: the epidemiologic study in San Valentino. Clin. Appl. Thromb. Hemost. 13: 130-136. 

  4. Xu ML, Kim HJ, Chang DY, Kim HJ. 2013. The effect of dietary intake of the acidic protein fraction of bovine colostrum on influenza A (H1N1) virus infection. J. Microbiol. 51: 389-393. 

  5. Park HY, Lee SH, Lee KS, Yoon HK, Yoo YC, Lee J, et al. 2015. Ginsenoside Rg1 and 20(S)-Rg3 induce IgA production by mouse B cells. Immune Netw. 15: 331-336. 

  6. Du XF, Jiang CZ, Wu CF, Won EK, Choung SY. 2008. Synergistic immunostimulatory effect of pidotimod and red ginseng acidic polysaccharide on humoral immunity of immunosuppressed mice. Pharmazie 63: 904-908. 

  7. Byeon SE, Lee J, Kim JH, Yang WS, Kwak YS, Kim SY, et al. 2012. Molecular mechanism of macrophage activation by red ginseng acidic polysaccharide from Korean red ginseng. Mediators Inflamm. 2012: 732860. 

  8. Choi S, Chung M-H. 2003. A review on the relationship between aloe vera components and their biologic effects. Semin. Integr. Med. 1: 53-62. 

  9. Christaki EV, Florou-Paneri PC. 2010. Aloe vera: a plant for many uses. J. Food Agric. Environ. 8: 245-249. 

  10. Sforcin JM. 2007. Propolis and the immune system: a review. J. Ethnopharmacol. 113: 1-14. 

  11. Orsolic N, Sver L, Terzic S, Basic I. 2005. Peroral application of water-soluble derivative of propolis (WSDP) and its related polyphenolic compounds and their influence on immunological and antitumor activity. Vet. Res. Commun. 29: 575-593. 

  12. Lane ER, Zisman TL, Suskind DL. 2017. The microbiota in inflammatory bowel disease: current and therapeutic insights. J. Inflamm. Res. 10: 63-73. 

  13. D’Angelo C, Reale M, Costantini E. 2017. Microbiota and probiotics in health and HIV infection. Nutrients 9: 1-15. 

  14. McKenzie C, Tan J, Macia L, Mackay CR. 2017. The nutritiongut microbiome-physiology axis and allergic diseases. Immunol. Rev. 278: 277-295 

  15. Aitoro R, Paparo L, Amoroso A, Di Costanzo M, Cosenza L, Granata V, et al. 2017. Gut microbiota as a target for preventive and therapeutic intervention against food allergy. Nutrients 9: 1-12. 

  16. Manuzak JA, Hensley-McBain T, Zevin AS, Miller C, Cubas R, Agricola B, et al. 2016. Enhancement of microbiota in healthy macaques results in beneficial modulation of mucosal and systemic immune function. J. Immunol. 196: 2401-2409. 

  17. Schiavi E, Barletta B, Butteroni C, Corinti S, Boirivant M, Di Felice G. 2011. Oral therapeutic administration of a probiotic mixture suppresses established Th2 responses and systemic anaphylaxis in a murine model of food allergy. Allergy 66: 499-508. 

  18. Distrutti E, Cipriani S, Mencarelli A, Renga B, Fiorucci S. 2013. Probiotics VSL#3 protect against development of visceral pain in murine model of irritable bowel syndrome. PLoS One 8: e63893. 

  19. Isidro RA, Lopez A, Cruz ML, Gonzalez Torres MI, Chompre G, Isidro AA, et al. 2017. The probiotic VSL#3 modulates colonic macrophages, inflammation, and microflora in acute trinitrobenzene sulfonic acid colitis. J. Histochem. Cytochem. 65: 445-461. 

  20. Adams CA. 2010. The probiotic paradox: live and dead cells are biological response modifiers. Nutr. Res. Rev. 23: 37-46. 

  21. De Vries MC, Vaughan EE, Kleerebezem M, De Vos WM. 2006. Lactobacillus plantarum survival, functional and potential probiotic properties in the human intestinal tract. Int. Dairy J. 16: 1018-1028. 

  22. Mitsuoka T. 2000. Significance of dietary modulation of intestinal flora and intestinal environment. Biosci. Microflora 19: 15-25. 

  23. Ohshima T, Kojima Y, Seneviratne CJ, Maeda N. 2016. Therapeutic application of synbiotics, a fusion of probiotics and prebiotics, and biogenics as a new concept for oral Candida infections: a mini review. Front. Microbiol. 7: 10. 

  24. Terada A, Bukawa W, Kan T, Mitsuoka T. 2004. Effects of the consumption of heat-killed Enterococcus faecalis EC-12 preparation on microbiota and metabolic activity of the faeces in healthy adults. Microbial Ecol. Health Dis. 16: 188-194. 

  25. Sawada D, Sugawara T, Ishida Y, Aihara K, Aoki Y, Takehara I, et al. 2016. Effect of continuous ingestion of a beverage prepared with Lactobacillus gasseri CP2305 inactivated by heat treatment on the regulation of intestinal function. Food Res. Int. 79: 33-39. 

  26. Hasegawa H, Kan T. 2008. Immunity for longevity and lactic acid bacteria: the effect of nanometric particles of lactic acid bacteria on Th1 cell induction. New Food Ind. 50: 1-8. 

  27. Kan T, Ohwaki M. 2014. Lactobacillus having ability to induce IL-12 production, and method for culturing same. WO Patent, 2014/ 088183. 

  28. Lee HA, Kim H, Lee KW, Park KY. 2016. Dead Lactobacillus plantarum stimulates and skews immune responses toward T helper 1 and 17 polarizations in RAW 264.7 cells and mouse splenocytes. J. Microbiol. Biotechnol. 26: 469-476. 

  29. Lee HA, Kim H, Lee KW, Park KY. 2015. Dead nano-sized Lactobacillus plantarum inhibits azoxymethane/dextran sulfate sodium-induced colon cancer in Balb/c mice. J. Med. Food 18: 1400-1405. 

  30. Lee HA, Bong YJ, Kim H, Jeong JK, Kim HY, Lee KW, et al. 2015. Effect of nanometric Lactobacillus plantarum in kimchi on dextran sulfate sodium-induced colitis in mice. J. Med. Food. 18: 1073-1080. 

  31. Woof J, Burton D. 2004. Human antibody-Fc receptor interactions illuminated by crystal structures. Nat. Rev. Immunol. 4: 89-99. 

  32. Pier GB, Lyczak JB, Wetzler LM. 2004. Imunology, Infection, and Immunity. ASM Press, Washington, D.C. 

  33. Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC. 2010. Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc. Natl. Acad. Sci. USA 107: 19985-19990. 

  34. Jin R, Wan LL, Mitsuishi T, Sato S, Akuzawa Y, Kodama K, et al. 1994. Effect of shi-ka-ron and Chinese herbs on cytokine production of macrophage in immunocompromised mice. Am. J. Chin. Med. 22: 255-266. 

  35. Zuluaga AF, Salazar BE, Rodriguez CA, Zapata AX, Agudelo M, Vesga O. 2006. Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases. BMC Infect. Dis. 6: 1-10. 

  36. Yasunami R, Bach JF. 1988. Anti-suppressor effect of cyclophosphamide on the development of spontaneous diabetes in NOD mice. Eur. J. Immunol. 18: 481-484. 

  37. Smith KM, Pottage L, Thomas ER, Leishman AJ, Doig TN, Xu D, et al. 2000. Th1 and Th2 $CD4^+$ T cells provide help for B cell clonal expansion and antibody synthesis in a similar manner in vivo. J. Immunol. 165: 3136-3144. 

  38. Birbrair A, Frenette PS. 2016. Niche heterogeneity in the bone marrow. Ann. NY Acad. Sci. 1370: 82-96. 

  39. Vunjak-Novakovic G, Tandon N, Godier A, Maidhof R, Marsano A, Martens TP, et al. 2010. Challenges in cardiac tissue engineering. Tissue Eng. Part B Rev. 16: 169-187. 

  40. Kaushik RS, Uzonna JE, Zhang Y, Gordon JR, Tabel H. 2000. Innate resistance to experimental African trypanosomiasis: differences in cytokine (TNF-alpha, IL-6, IL-10 and IL-12) production by bone marrow-derived macrophages from resistant and susceptible mice. Cytokine 12: 1024-1034. 

  41. Wang C, Yu X, Cao Q, Wang Y, Zheng G, Tan TK, et al. 2013. Characterization of murine macrophages from bone marrow, spleen and peritoneum. BMC Immunol. 14: 6. 

  42. Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu Y, et al. 2012. Bone marrow and the control of immunity. Cell. Mol. Immunol. 9: 11-19. 

  43. Springer TA. 1980. Cell-surface differentiation in the mouse, pp. 185-217. In Kennett RH, McKearn TJ, Bechtol KB (eds.), Monoclonal Antibodies. Springer, Boston, MA. 

  44. Ma X, Yan W, Zheng H, Du Q, Zhang L, Ban Y, et al. 2015. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Res 4: 1465. 

  45. Kruglov AA, Lampropoulou V, Fillatreau S, Nedospasov SA. 2011. Pathogenic and protective functions of TNF in neuroinflammation are defined by its expression in Tlymphocytes and myeloid cells. J. Immunol. 187: 5660-5670. 

  46. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, et al. 2009. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325: 612-616. 

  47. Jia T, Pamer EG. 2009. Immunology. Dispensable but not irrelevant. Science 325: 549-550. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로