$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

신육종기술의 규제 전망 및 문제점
Trends in the global regulation of new breeding techniques and perspective 원문보기

Journal of applied biological chemistry, v.61 no.4, 2018년, pp.305 - 314  

김동헌 (Green Bio Consulting) ,  서승만 (Institute of Life Sciences and Resources, Department of Food Science & Biotechnology, Kyung Hee University) ,  김지영 (Institute of Life Sciences and Resources, Department of Food Science & Biotechnology, Kyung Hee University) ,  김해영 (Institute of Life Sciences and Resources, Department of Food Science & Biotechnology, Kyung Hee University)

Abstract AI-Helper 아이콘AI-Helper

'New Breeding Techniques (NBTs)' have been one of hot issues, since their future will be affected profoundly by national as well as international regulatory landscapes. In this review, we compare characteristics of NBTs with conventional and genetic modification, and analyze genetically modified org...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이들을 GMO에 포함시킬 경우 상당한 경쟁력을 갖고 있으면서도 막대한 규제 비용과 시간의 소요로 실용화 확산에 어려움을 겪고 있는 유전자변형 기술의 전철을 밟을 것이라고 걱정하는 것이다. 따라서 본 보고에서는 신육종기술의 개요와 유전자 교정을 중심으로 한 각국의 규제 전망 그리고 국내 유전자변형 생물체 규제 규범을 비교, 검토하여 향후 신육종기술 규제 정책 수립을 위한 참고자료를 제공하고자 하였다.
  • 이 보고에서 우리는 신육종기술로 분류되는 작물의 새로운 변이 창출에 대해 검토했다. 이들 중 일부는 최종 산물 내에 새롭게 조합된 유전물질을 포함(cisgenesis, intragenesis, SDN-3 등)하며 나머지는 신작물 육성 중간단계에서는 포함하지만 최종적으로 제거(역육종, RdDM, SDN-1, SDN-2)하거나 새롭게 조합된 유전물질의 도입(transgenesis)과정을 거치지 않는다(접목, 아그로 접종, ODM, SDN-1, SDN-2).
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
유전자변형은 어떤 기술인가? 유전자변형(GM, genetic modification)은 전통육종(conventional breeding)을 이용한 농작물 신품종 육성의 여러 가지 기술적 문제를 해결할 수 있는 유력한 수단으로서 1990년대 중반 이후 그 상업적 활용이 지속적으로 증가하고 있다[1]. 그러나 환경단체 등의 반대 캠페인에서 비롯된 사회적 논란과 국가, 지역 및세계 수준의 복잡한 규제 체계, 그리고 이에 따른 천문학적인 제품 개발 비용 등으로 인해 이 기술의 잠재력이 크게 훼손됐다는 점도 부인하기는 어렵다[2].
국내에서의 유전자교정 산물에 대한 시각은 어떠한가? 국내에서도 신육종기술, 특히 유전자교정 산물의 규제 가능 성에 대해 높은 관심과 우려를 표하고 있다[12,18]. 이들을 GMO에 포함시킬 경우 상당한 경쟁력을 갖고 있으면서도 막대한 규제 비용과 시간의 소요로 실용화 확산에 어려움을 겪고 있는 유전자변형 기술의 전철을 밟을 것이라고 걱정하는 것이다. 따라서 본 보고에서는 신육종기술의 개요와 유전자 교정을 중심으로 한 각국의 규제 전망 그리고 국내 유전자변형 생물체 규제 규범을 비교, 검토하여 향후 신육종기술 규제 정책 수립을 위한 참고자료를 제공하고자 하였다.
유전자변형 생물 체에 대한 관련업자들의 입장은 어떠한가? 신육종기술의 개발이 진전되어 일부 기술의 실용적 활용이 현실화됨에 따라 관련 기술과 제품이 유전자변형 생물체(GMO, genetically modified organism)의 한 부류로서 규제될 것인지가 초미의 관심사로 떠오르고 있다[10-11]. 특히, 유전자변형 생물 체가 지나치게 엄격하게 규제되고 있다고 생각하는 관련 과학자와 산업체 관계자들은 신육종기술과 그 제품이 GMO와 같은 운명에 처하게 될 수도 있다는 것에 대해 심각하게 우려하고 있다[11-12]. 반면, 유기농업 관련자들은 신육종기술에 대해서도 GMO와 마찬가지로 반대의 입장을 표명하고 있다[13].
질의응답 정보가 도움이 되었나요?

참고문헌 (63)

  1. ISAAA. Global status of commercialized biotech/GM crops in 2017: Biotech crop adoption surges as economic benefits accumulate in 22 years. ISAAA Brief No. 53. Ithaca: ISAAA; 2017. 

  2. SCHURMAN, RACHEL. Fighting “Frankenfoods”: Industry Opportunity Structures and the Efficacy of the Anti-Biotech Movement in Western Europe. Social problems, vol.51, no.2, 243-268.

  3. COGEM. New techniques in plant biotechnology. COGEM report CGM/061024-02 2006. 

  4. European Commission. Working group on the establishment of a list of techniques falling under the scope of directive 2001/18/EC on the deliberate release of genetically modified organisms into the environment and directive 90/219/EEC on the contained use of genetically modified micro-organisms. ENV B3/AA/D 2008. 

  5. Lusser M, Parisi C, Plan D, and Rodriguez-Cerezo E. New plant breeding techniques: state-of-the-art and prospects for commercial development. EC JRC Reference Report EUR 24760 EN 2011. 

  6. Lusser, Maria, Parisi, Claudia, Plan, Damien, Rodr챠guez-Cerezo, Emilio. Deployment of new biotechnologies in plant breeding. Nature biotechnology, vol.30, no.3, 231-239.

  7. European Commission. New techniques in agricultural biotechnology. Scientific Advisory Mechanism, High Level Group of Scientific Advisors. Explanatory Note 02/2017 2017. 

  8. Atanassova, Ana, Keiper, Felicity. Plant breeding innovation: A global regulatory perspective. Cereal chemistry, vol.95, no.1, 8-16.

  9. Schaart, Jan G., van de Wiel, Clemens C.M., Lotz, Lambertus A.P., Smulders, Marinus J.M.. Opportunities for Products of New Plant Breeding Techniques. Trends in plant science, vol.21, no.5, 438-449.

  10. CBGP UPM-INIA. Regulating genome edited organisms as GMOs has negative consequences for agriculture, society and economy 2018. http://www.cbgp.upm.es/files/Position_paper_on_the_ECJ_ruling_on_CRISPR22_Oct_2018_CONFIDENTIAL.pdf 

  11. Genetic engineering in plants and the “new breeding techniques (NBTs)”, Inherent risks and the need to regulate. EcoNexus Briefing December Array. http//nuffieldbioethics.org/wpcontent/uploads/genome-editing-evidence-EcoNexus.pdf Accessed 30 October 2018 

  12. Koh HJ. Management measures of plant varieties by the application of genome editing techniques. Proceedings of Joint Symposium on Genome Editing. Kosid and Kor Soc Breeding Sci 2018:71-96. 

  13. Nuijten, Edwin, Messmer, Monika, Lammerts van Bueren, Edith. Concepts and Strategies of Organic Plant Breeding in Light of Novel Breeding Techniques. Sustainability, vol.9, no.1, 18-.

  14. USDA. Secretary Perdue issues USDA statement on plant breeding innovation. Press Release No 0070.18 2018. https://www.usda.gov/media/press-releases/2018/03/28/secretary-perdue-issues-usda-statementplant-breeding-innovation 

  15. Court of Justice of the European Union. Organisms obtained by mutagenesis are GMOs and are, in principle, subject to the obligations laid down by the GMO Directive. Press Release No 111/18 2018. https://curia.europa.eu/jcms/upload/docs/application/pdf/2018-07/cp180111en.pdf 

  16. Wight, Andrew J.. Strict EU ruling on gene-edited crops squeezes science. Nature, vol.563, no.7729, 15-16.

  17. Lassoued, Rim, Smyth, Stuart J., Phillips, Peter W. B., Hesseln, Hayley. Regulatory Uncertainty Around New Breeding Techniques. Frontiers in plant science, vol.9, 1291-.

  18. Kim JY. Recent progress in CRISPR-based genome editing techniques and domestic research status. Proceedings of Joint Symposium on Genome Editing. Kosid and Kor Soc Breeding Sci 2018:31-54. 

  19. Kim, Y G, Cha, J, Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain.. Proceedings of the National Academy of Sciences of the United States of America, vol.93, no.3, 1156-1160.

  20. Carroll, Dana. Genome Engineering With Zinc-Finger Nucleases. Genetics, vol.188, no.4, 773-782.

  21. Gaj, T., Gersbach, C.A., Barbas, C.F.. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in biotechnology, vol.31, no.7, 397-405.

  22. Kamburova, Venera S., Nikitina, Elena V., Shermatov, Shukhrat E., Buriev, Zabardast T., Kumpatla, Siva P., Emani, Chandrakanth, Abdurakhmonov, Ibrokhim Y.. Genome Editing in Plants: An Overview of Tools and Applications. International journal of agronomy, vol.2017, 1-15.

  23. Gupta, Rajat M., Musunuru, Kiran. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. The Journal of clinical investigation, vol.124, no.10, 4154-4161.

  24. Malzahn, Aimee, Lowder, Levi, Qi, Yiping. Plant genome editing with TALEN and CRISPR. Cell & bioscience, vol.7, no.1, 21-.

  25. Haft DH, Selengut J, Mongodin EF, and Nelson KE. Aguild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 2014;1:474-483. 

  26. Perkin, Lindsey C., Adrianos, Sherry L., Oppert, Brenda. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control. Insects, vol.7, no.3, 46-.

  27. USDA APHIS. Regulated article letters of inquiry 2018. https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/am-i-regulated/Regulated_Article_Letters_of_Inquiry 

  28. Clasen, Benjamin M., Stoddard, Thomas J., Luo, Song, Demorest, Zachary L., Li, Jin, Cedrone, Frederic, Tibebu, Redeat, Davison, Shawn, Ray, Erin E., Daulhac, Aurelie, Coffman, Andrew, Yabandith, Ann, Retterath, Adam, Haun, William, Baltes, Nicholas J., Mathis, Luc, Voytas, Daniel F., Zhang, Feng. Improving cold storage and processing traits in potato through targeted gene knockout. Plant biotechnology journal, vol.14, no.1, 169-176.

  29. Demorest, Zachary L., Coffman, Andrew, Baltes, Nicholas J., Stoddard, Thomas J., Clasen, Benjamin M., Luo, Song, Retterath, Adam, Yabandith, Ann, Gamo, Maria Elena, Bissen, Jeff, Mathis, Luc, Voytas, Daniel F., Zhang, Feng. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC plant biology, vol.16, 225-.

  30. Bomgardner MM. CRISPR: A new toolbox for better crops. Chemical and Engineerin News 2017;95:30-34. 

  31. Editing the mushroom. Scientific America 2016. https://www.aaas.org/sites/default/files/Stephan%20Hall%20-Gene-EditedMushroom%20(SciAm)%20(3).pdf 

  32. Wang, Yanpeng, Cheng, Xi, Shan, Qiwei, Zhang, Yi, Liu, Jinxing, Gao, Caixia, Qiu, Jin-Long. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature biotechnology, vol.32, no.9, 947-951.

  33. Petolino, Joseph F.. Genome editing in plants via designed zinc finger nucleases. In vitro cellular & developmental biology. journal of the Tissue Culture Association. Plant, vol.51, no.1, 1-8.

  34. Sauer, Noel J., Mozoruk, Jerry, Miller, Ryan B., Warburg, Zachary J., Walker, Keith A., Beetham, Peter R., Schöpke, Christian R., Gocal, Greg F. W.. Oligonucleotide‐directed mutagenesis for precision gene editing. Plant biotechnology journal, vol.14, no.2, 496-502.

  35. Espinoza, C, Schlechter, R, Herrera, D, Torres, E, Serrano, A, Medina, C, Arce-Johnson, P. Cisgenesis and intragenesis: new tools for improving crops.. Biological research, vol.46, no.4, 323-331.

  36. Jo, Kwang-Ryong, Kim, Chol-Jun, Kim, Sung-Jin, Kim, Tok-Yong, Bergervoet, Marjan, Jongsma, Maarten A, Visser, Richard GF, Jacobsen, Evert, Vossen, Jack H. Development of late blight resistant potatoes by cisgene stacking. BMC biotechnology, vol.14, 50-50.

  37. Kost, Thomas D., Gessler, Cesare, Jänsch, Melanie, Flachowsky, Henryk, Patocchi, Andrea, Broggini, Giovanni A. L.. Development of the First Cisgenic Apple with Increased Resistance to Fire Blight. PloS one, vol.10, no.12, e0143980-.

  38. Schaart JG, Kjellsen TD, Mehli L, Heggem R, Iversen T-H, Schouten HJ, and Krens FA. Towards the production of genetically modified strawberries which are acceptable to consumers. Genes, Genomes & Genomics 2011;5:102-107. 

  39. EPSO. Reverse breeding. Meet the parent. Crop Genetic Improvement Techniques Fact Sheet 2016. http://www.epsoweb.org/file/2183 

  40. Kumari P, Nilanjaya , and Singh NK. Reverse breeding: Accelerating innovation in plant breeding. J Pharmacognosy Phytochem 2018;SP1:1811-1813. 

  41. Dirks, Rob, van Dun, Kees, de Snoo, C Bastiaan, van den Berg, Mark, Lelivelt, Cilia L C, Voermans, William, Woudenberg, Leo, de Wit, Jack P C, Reinink, Kees, Schut, Johan W, van der Zeeuw, Eveline, Vogelaar, Aat, Freymark, Gerald, Gutteling, Evert W, Keppel, Marina N, van Drongelen, Paul, Kieny, Matthieu, Ellul, Philippe, Touraev, Alisher, Ma, Hong, de Jong, Hans, Wijnker, Erik. Reverse breeding: a novel breeding approach based on engineered meiosis. Plant biotechnology journal, vol.7, no.9, 837-845.

  42. Lee, Raymond W. H., Strommer, Judith, Hodgins, Doug, Shewen, Patricia E., Niu, Yongqing, Lo, Reggie Y. C.. Towards Development of an Edible Vaccine against Bovine Pneumonic Pasteurellosis Using Transgenic White Clover Expressing aMannheimia haemolyticaA1 Leukotoxin 50 Fusion Protein. Infection and immunity, vol.69, no.9, 5786-5793.

  43. Lusser, M., Davies, H.V.. Comparative regulatory approaches for groups of new plant breeding techniques. New biotechnology, vol.30, no.5, 437-446.

  44. Goldschmidt, Eliezer E.. Plant grafting: new mechanisms, evolutionary implications. Frontiers in plant science, vol.5, 727-.

  45. Liu, Zhang-Wei, Zhou, Jin-Xing, Huang, Huan-Wei, Li, Yong-Qiang, Shao, Chang-Rong, Li, Lin, Cai, Tao, Chen, She, He, Xin-Jian. Two Components of the RNA-Directed DNA Methylation Pathway Associate with MORC6 and Silence Loci Targeted by MORC6 in Arabidopsis. PLoS genetics, vol.12, no.5, e1006026-.

  46. Smyth, Stuart J.. Canadian regulatory perspectives on genome engineered crops. GM crops & food, vol.8, no.1, 35-43.

  47. SAGP. Secretaria de agricultura ganaderia Y pesca, resolution 173/2015 2015. https://boletinoficial.gob.ar/#!DetalleNotmativa/1095531/null 

  48. Whelan, Agustina I, Lema, Martin A. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM crops & food, vol.6, no.4, 253-265.

  49. To regulate or not to regulate: Current legal status for gene-edited crops 2018. http://www.global-engage.com/agricultural-biotechnology/to-regulate-or-not-to-regulate-current-legal-status-for-gene-edited-crops/ 

  50. Kahrmann J. Regulation of genome editing in Europe and Germany. Proceedings of Second Asia Forum on Genome Editing, Korean Biosafety Clearing House 2018:59-71. 

  51. UK. Evidence check: GM and gene editing-Government statement 2018. https://www.parliament.uk/documents/commons-committees/science-technology/evidence-tests/GM-and-Gene-Editing.pdf 

  52. Fritsche, Steffi, Poovaiah, Charleson, MacRae, Elspeth, Thorlby, Glenn. A New Zealand Perspective on the Application and Regulation of Gene Editing. Frontiers in plant science, vol.9, 1323-.

  53. Mitchell H. Australian regulation, risk assessment and genome edited organisms. Proceedings of Second Asia Forum on Genome Editing, Korean Biosafety Clearing House 2018:261-276. 

  54. Scientists in China race to edit crop genes, sowing unease in US. Wall Street Journal 2018. https://www.wsj.com/articles/scientists-in-china-race-to-edit-crop-genes-sowing-unease-in-u-s-1525611601 

  55. USDA FAS. Israel agricultural biotechnology annual 2017 2017. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Agricultural%20Biotechnology%20Annual_Tel%20Aviv_Israel_12-1-2017.pdf 

  56. Tachikawa M. Regulatory discussions and consumer perceptions on genome editing in Japan. Proceedings of Second Asia Forum on Genome Editing, Korean Biosafety Clearing House 2018:239-255. 

  57. Abdullah MFF. Regulatory issues on genome editing in Malaysia. Proceedings of Second Asia Forum on Genome Editing, Korean Biosafety Clearing House 2018:91-103. 

  58. Rahman SJ. Genome editing technologies: Existing monitoring and compliance protocols for confined field trials of GE crops in India. Proceedings of Second Asia Forum on Genome Editing, Korean Biosafety Clearing House 2018:131-142. 

  59. Biosafety Clearing House. Cartagena protocol on biosafety 2018. https://bch.cbd.int/protocol/ 

  60. 10.1080/21645698.2016.1261787 

  61. Array. Act on transboundary movement, etc., of living modified organisms (Act No.6448 of March 28, 2001, as amended up to Act No. 12833 of November 19, 2014) 2014. http://www.wipo.int/wipolex/en/details.jsp?id=15643 

  62. KFDA. Food sanitation act (Act No. 15277, December 19, 2017) 2017. https://elaw.klri.re.kr/kor_mobile/viewer.do?hseq=46429&type=sogan&key=31 

  63. MAFRA. Agricultural and fishery products quality control act (Act No 14483, December 27, 2016) 2016. https://elaw.klri.re.kr/kor_mobile/viewer.do?hseq=42239&type=sogan&key=7 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로