$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

비만을 동반한 제 2형 당뇨병환자의 혈당 조절을 위한 운동 중재 : 체계적 문헌고찰
Exercise Intervention on Blood Glucose Control of Type 2 Diabetes with Obesity : A Systematic Review 원문보기

대한물리의학회지 = Journal of the korean society of physical medicine, v.13 no.1, 2018년, pp.11 - 26  

정수련 (경남대학교 건강과학대학 스포츠과학과) ,  김완수 (대구대학교 재활과학대학 건강증진학과)

Abstract AI-Helper 아이콘AI-Helper

PURPOSE: The aim of this study was to review the effects of exercise intervention on blood glucose control in obese type 2 diabetic patients. METHODS: The PubMed and KERISS search engines were used and 61 papers that met the key questions were selected. RESULTS: Exercise is an effective intervention...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 체계적 문헌 고찰을 통해 비만을 동반한 제 2형 당뇨병 환자의 혈당 조절을 위한 운동 중재를 검토하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
당뇨병환자가 증가하는 이유는 무엇인가? 당뇨병(Diabetes mellitus)은 대사성 질환으로 장기간 높은 혈당 수치를 보이는 것이 특징이며, 방치하면 케톤산증 또는 비케톤성 혼수와 같은 급성 합병증은 물론 이고 심혈관 질환, 뇌졸중, 만성 신부전, 족부궤양, 및 눈의 손상과 같은 심각한 만성 합병증을 발생시킨다(Stanford, 2014). 당뇨병환자는 인구의 고령화는 물론 특히 비만 인구 증가에 따라 점차적으로 증가하고 있는 추세이다(Lim 등, 2015). 또한, 당뇨병은 우리나라 성인의 관상동맥질환 1위의 위험인자로(Kim, 2017), 당뇨병에 의한 개인적 고통은 사회적, 국가적 손실로 직결됨으로 국가적 차원에서 적극적인 예방 및 치료가 모색되어야 한다.
당뇨병(Diabetes mellitus)의 특징과 합병증은 무엇인가? 당뇨병(Diabetes mellitus)은 대사성 질환으로 장기간 높은 혈당 수치를 보이는 것이 특징이며, 방치하면 케톤산증 또는 비케톤성 혼수와 같은 급성 합병증은 물론 이고 심혈관 질환, 뇌졸중, 만성 신부전, 족부궤양, 및 눈의 손상과 같은 심각한 만성 합병증을 발생시킨다(Stanford, 2014). 당뇨병환자는 인구의 고령화는 물론 특히 비만 인구 증가에 따라 점차적으로 증가하고 있는 추세이다(Lim 등, 2015).
당뇨병은 우리나라 성인의 관상동맥질환으로써 종류와 특성은 무엇인가? 또한, 당뇨병은 우리나라 성인의 관상동맥질환 1위의 위험인자로(Kim, 2017), 당뇨병에 의한 개인적 고통은 사회적, 국가적 손실로 직결됨으로 국가적 차원에서 적극적인 예방 및 치료가 모색되어야 한다. 특히, 제 2형 당뇨병은 신체 조직이 인슐린에 적절한 반응을 할 수 없는 일종의 대사 이상에 의해 나타나는데, 이러한 현상을 인슐린 저항성(insulin resistance)이라 한다. 인슐린 저항성은 인슐린 감수성 (Insulin sensitivity)이 높은 조직이 순환하는 인슐린 농도에 비해 반응력이 감소한 상태를 말한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (62)

  1. Alam MA, Subhan N, Hossain H, et al. Hydroxycinnamic acid derivatives: A potential class of natural compounds for the management of lipidmetabolism and obesity. NutrMetab. 2016;13:27. 

  2. Arias EB, Kim J, Funai K, Cartee GD. Prior exercise increases phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle. Am J Physiol Endocrinol Metab. 2007;292:E1191-E200. 

  3. Becker-Zimmermann K, Berger M, Berchtold P, et al. Treadmill training improves intravenous glucose tolerance and insulin sensitivity in fatty Zucker rats. Diabetologia 1982;22(6):468-74. 

  4. Bergstrom J, Hultman E. Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cellsin man. Nature. 1966;10:309-10. 

  5. Brozinick JT Jr, Etgen GJ Jr, Yaspelkis BB 3rd, et al. The effects of muscle contraction and insulin on glucosetransporter translocation in rat skeletal muscle. Biochem J. 1994;297(Pt 3):539-45. 

  6. Calegari VC, Zoppi CC, Rezende LF, et al. Endurance training activates AMP-activated protein kinase, increases expression of uncoupling protein 2 and reduces insulin secretion from rat pancreatic islets. J Endocrinol 2011;208(3):257-64. 

  7. Camera DM, Edge J, Short MJ, et al. Early time course of Akt phosphorylation after endurance and resistance exercise. Med Sci Sports Exerc 2010;42(10):1843-52. 

  8. Cartee GD, Briggs-Tung C, Kietzke EW. Persistent effects of exercise on skeletal muscle glucose transport across the life-span of rats. J Appl Physiol. 1993;75:972-78. 

  9. Chu M, Lee MY.Comparison of Body Composition of College Students after 4week Jump-roping Exercise. J Korean Soc Phys Med. 2013;8(4):627-35. 

  10. Colberg SR, Albright AL, Blissmer BJ, et al. Exercise and type 2 diabetes: american college of sports medicine and the american diabetes association: joint position statement. Exercise and type 2 diabetes. Med Sci Sports Exerc. 2010;42(12):2282-303. 

  11. Combes A, Dekerle J, Webborn N, et al. Exercise-induced metabolic fluctuations influence AMPK, p38-MAPK and CaMKII phosphorylation in human skeletal muscle. Physiol Rep. 2015;3(9):e12462. 

  12. Consitt LA, Van Meter J, Newton CA, et al. Impairments in site-specific AS160 phosphorylation and effects of exercise training. Diabetes. 2013;62(10):3437-47. 

  13. Cortez MY, Torgan CE, Brozinick JT Jr, et al. Insulin resistance of obese Zucker rats exercise trained at two different intensities. Am J Physiol. 1991; 261(5Pt1):E613-9. 

  14. Douen AG, Ramlal T, Rastogi S, et al. Exercise induces recruitment of the "insulin-responsive glucose transporter". Evidence for distinct intracellular insulin-and exercise-recruitabletransporter pools in skeletal muscle. J Biol Chem. 1990;265(23): 13427-30. 

  15. Edgett BA, Fortner ML, Bonen A, et al. Mammalian target of rapamycin pathway is up-regulated by both acute endurance exercise and chronic muscle contraction in rat skeletal muscle. Appl Physio lNutr Metab. 2013;38(8):862-9. 

  16. Etgen GJ Jr, Wilson CM, Jensen J, et al. Glucose transport and cell surface GLUT-4 protein in skeletal muscle of the obese Zucker rat. Am J Physiol. 1996; 271(2Pt1):E294-301. 

  17. Furnsinn C, Noe C, Herdlicka R, et al. More marked stimulation by lithium than insulin of the glycogenic pathway in rat skeletal muscle. Am J Physiol. 1997;273 (3Pt1):E514-20. 

  18. Goodyear LJ, Giorgino F, Sherman LA, et al. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest. 1995;95(5): 2195-204. 

  19. Goodyear LJ, Hirshman MF, Horton ES. Exercise-induced translocation of skeletal muscle glucose transporters. Am J Physiol. 1991;261(6Pt1):E795-9. 

  20. Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998;49:235-61. 

  21. Harrell NB, Teachey MK, Gifford NJ, et al. Essential role of p38 MAPK for activation of skeletal muscle glucose transport by lithium. Arch PhysiolBiochem. 2007; 113(4-5):221-7. 

  22. Haugaard ES, Mickel RA, Haugaard N. Actions of lithium ions and insulin on glucose utilization, glycogen synthesis and glycogen synthase in the isolated rat diaphragm. Biochem Pharmacol. 1974;23(12):1675-85. 

  23. Hayashi T, Wojtaszewski JF, Goodyear LJ. Exercise regulation of glucose transport in skeletal muscle. Am J Physiol. 1997;273(6Pt1):E1039-51. 

  24. Ivy JL. Muscle insulin resistance amended with exercise training: role of GLUT4 expression. Med Sci Sports Exerc. 2004;36(7):1207-11. 

  25. Jung SR, Koh JH, Kim SH, et al. Effect of Lithium on Mechanism of Glucose Transport in Skeletal Muscles. J NutrSciVitaminol 2017;63:365-71. 

  26. Katta A, Kakarla S, Wu M, et al. Altered regulation of contraction-induced Akt/mTOR/p70S6k pathway signaling in skeletal muscle of the obese Zucker rat. Exp Diabetes Res. 2009;384683. 

  27. Kemp BE, Mitchelhill KI, Stapleton D, et al. Dealing with energy demand: the AMP-activated protein kinase. Trends BiochemSci. 1999;24(1):22-5. 

  28. Kennedy JW, Hirshman MF, Gervino EV, et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes. 1999;48(5):1192-7. 

  29. Kim HA, Seo KC, Tim SY, et al. Analysis of the Chest Expansion and Pulmonary Function in the 20s men Obesity according to Position Change. J Korean Soc Phys Med. 2011;6(3):247-56. 

  30. Kim WS. The characteristics of risk factors in Korean CAD patients comparing to American counterpart and its implications to prevention of CAD. J Korean Soc Phys Med. 2017;12(2):9-20. 

  31. Kim WS. The effect of obesity, blood pressure and lifestyle on lipid indices and blood pressure in men of age 40s. J Korean Soc Phys Med. 2013;8(2):239-43. 

  32. King PA, Betts JJ, Horton ED, et al. Exercise, unlike insulin, promotes glucose transporter translocation in obese Zucker rat muscle. Am J Physiol. 1993;265(2Pt2): R447-52. 

  33. Kleinert M, Sylow L, Fazakerley DJ, et al. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo. Mol Metab. 2014; 3(6):630-41. 

  34. Klip A, Ramlal T, Bilan PJ, et al. Recruitment of GLUT-4 glucose transporters by insulin in diabetic rat skeletal muscle. Biochem Biophys Res Commun. 1990; 172(2):728-36. 

  35. Lim CH, Ko YM. The effects of the combined exercise program on physical fitness and related hormonein elderly women. J Korean Soc Phys Med. 2015; 10(1):53-61. 

  36. Luo L, Lu AM, Wang Y, et al. Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats. Exp Gerontol. 2013;48(4):427-36. 

  37. Maarbjerg SJ, Sylow L, Richter EA. Current understanding of increased insulin sensitivity after exerciseemerging candidates. Acta Physiol (Oxf). 2011; 202(3):323-35. 

  38. Mascher H, Ekblom B, Rooyackers O, et al. Enhanced rates of muscle protein synthesis and elevated mTOR signalling following endurance exercise in human subjects. Acta Physiol (Oxf). 2011;202(2):175-84. 

  39. McGarry JD. Glucose-fatty acid interactions in health and disease. Am J Clin Nutr. 1998;67(3 Suppl):500S-4S. 

  40. Merrill GF, Kurth EJ, Hardie DG, et al. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol. 1997;273(6Pt1):E1107-12. 

  41. Michelle Furtado L, Poon V, Klip A. GLUT4 activation: thoughts on possible mechanisms. Acta Physiol. Scand. 2003;178:287-96. 

  42. Nitert MD, Dayeh T, Volkov P, et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes. 2012;61(12):3322-32. 

  43. Ok HA. The effects of aquatic group exercise on body composition and mental health of elderly women. J Korean Soc Phys Med. 2017;12(1):103-12. 

  44. Prabhakar PK, Doble M. Interaction of cinnamic acid derivatives with commercial hypoglycemic drugs on2-deoxyglucose uptake in 3T3-L1 adipocytes. J Agric Food Chem. 2011;59:9835-44. 

  45. Pugh JK, Faulkner SH, Jackson AP, et al. Acute molecular responses to concurrent resistance and high-intensity interval exercise in untrained skeletal muscle. Physiol Rep 2015;3(4):e12364. 

  46. Rohling M, Herder C, Roden M, et al. Effects of long-term exercise interventions on glycaemic control in type 1 and type 2 diabetes: a systematic review. Exp Clin Endocrinol Diabetes. 2016;124(8):487-94. 

  47. Roden M. Exercise in type 2 diabetes: to resist or to endure? Diabetologia. 2012;55(5):1235-9. 

  48. Ryder JW, Yang J, Galuska D, et al. Use of a novel impermeable biotinylatedphotolabeling reagent to assess insulinand hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients. Diabetes. 2000;49(4):647-54. 

  49. Sharoff CG, Hagobian TA, Malin SK, et al. Combining short-term metformin treatment and one bout of exercise does not increase insulin action in insulinresistant individuals. Am J Physiol Endocrinol Metab 2010;298:E815-E23. 

  50. Sriwijitkamol A, Coletta DK, Wajcberg E, et al. Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study. Diabetes. 2007;56(3):836-48. 

  51. Stanford KI, Goodyear LJ. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ. 2014;38(4): 308-14. 

  52. Stein SA,Lamos EM, Davis SN.A review of the efficacy and safety of oral antidiabetic drugs. Expert Opin Drug Saf. 2013;12:153-75. 

  53. Stuart CA, Howell ME, Baker JD, et al. Cycle training increased GLUT4 and activation of mammalian target of rapamycin in fast twitch muscle fibers. Med Sci Sports Exerc. 2010;42(1):96-106. 

  54. Sylow L, Moller LL, Kleinert M, et al. Rac1-a novel regulator of contraction-stimulated glucose uptake in skeletal muscle. Exp Physiol. 2014;99(12):1574-80. 

  55. Tabata I, Schluter J, Gulve EA, et al. Lithium increases susceptibility of muscle glucose transport to stimulation by various agents. Diabetes. 1994;43(7): 903-7. 

  56. Thomson DM, Fick CA, Gordon SE.AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions. J Appl Physiol. (1985) 2008;104(3):625-32. 

  57. Vendelbo MH, Moller AB, Treebak JT, et al. Sustained AS160 and TBC1D1 phosphorylations in human skeletal muscle 30 min after a single bout of exercise. J Appl Physiol. (1985) 2014;117(3):289-96. 

  58. Vissing K, McGee S, Farup J, et al. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals. Scand J Med Sci Sports. 2013;23(3):355-66. 

  59. Wallberg-Henriksson H, Constable SH, Young DA, et al. Glucose transport into rat skeletal muscle: interaction between exercise and insulin. J Appl Physiol. 1988;65(2):909-13. 

  60. Witczak CA, Sharoff CG, Goodyear LJ. AMP-activated protein kinase in skeletal muscle: from structure and localization to its role as a master regulator of cellular metabolism. Cell Mol Life Sci. 2008;65(23):3737-55. 

  61. Wojtaszewski JF, Hansen BF, Gade, et al. Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes. 2000;49(3):325-31. 

  62. Zhao R, Qiu B, Li Q, et al. LBP-4a improves insulin resistance via translocation and activation of GLUT4 in OLETF rats. Food Funct. 2014;5(4):811-20. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로