최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기터널과 지하공간: 한국암반공학회지 = Tunnel and underground space, v.28 no.6, 2018년, pp.596 - 608
류동우 (한국지질자원연구원) , 이기송 (충북대학교) , 김은희 (한국전자통신연구원) , 염병우 (한국지질자원연구원)
As urban infrastructure is aging, the possibility of accidents due to the failures or breakdowns of infrastructure increases. Especially, aging underground infrastructures like sewer pipes, waterworks, and subway have a potential to cause an urban ground sink. Urban ground sink is defined just as a ...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
도심지 지반함몰의 정의는 무엇인가? | 특히, 하수관로, 상수도관망, 지하철 등 노후화된 지하 시설물은 도심지 지반함몰을 유발하는 잠재적 원인이 된다. 도심지 지반함몰은 토양 침식 혹은 유실로 인해 생성된 지하 공동이 확장하여 지역적이고 갑작스런 지반 붕괴까지 이르는 현상으로 정의할 수 있다. 이는 석회암과 같은 용해성 암반에서 발생하는 싱크홀과는 구분된다. | |
노후화된 지하 시설물은 무엇의 잠재적 원인이 되는가? | 도시 기반시설이 노후화됨에 따라 도시 재난 발생 가능성이 증가하고 있다. 특히, 하수관로, 상수도관망, 지하철 등 노후화된 지하 시설물은 도심지 지반함몰을 유발하는 잠재적 원인이 된다. 도심지 지반함몰은 토양 침식 혹은 유실로 인해 생성된 지하 공동이 확장하여 지역적이고 갑작스런 지반 붕괴까지 이르는 현상으로 정의할 수 있다. | |
도심지 지반함몰은 무엇과 구분되는가? | 도심지 지반함몰은 토양 침식 혹은 유실로 인해 생성된 지하 공동이 확장하여 지역적이고 갑작스런 지반 붕괴까지 이르는 현상으로 정의할 수 있다. 이는 석회암과 같은 용해성 암반에서 발생하는 싱크홀과는 구분된다. 지반 거동과 관련된 전통적인 계측 방식은 좁은 측정 범위와 각 센싱 지점에서의 계측값을 제공하기 때문에 불특정 다수 지역에서 발생할 수 있는 지반함몰 감시체계로서 한계가 있다. |
Askari, A. R. Stark, J. Curran, D. Rule, K. Lin, Underwater wireless power transfer, Wireless Power Transfer Conference (WPTC), 2015 IEEE, pp. 1-4.
Brown, W., 1984, The history of power transmission by radio waves, IEEE Trans. Microw. Theory Tech., vol. MTT-32, no. 9, pp. 1230-1242.
Hirai, J., T. W. Kim, and A. Kawamura, 2000, Study on intelligent battery charging using inductive transmission of power and information, IEEE Trans. Power Electron., vol. 15, no. 2, pp. 335-345.
Jang, Y. T. and M. M. Jovanovic, 2003, A contactless electrical energy transmission system for portable-telephone battery chargers, IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527.
Karalis, A., J. Joannopoulos, and M. Soljacic, 2008, Efficient wireless nonradiative mid-range energy transfer, Ann. Phys., vol. 323, no. 1, pp. 34-48.
Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, 2007, Wireless power transfer via strongly coupled magnetic resonances, Sci. Express, vol. 317, no. 5834, pp. 83-86.
Lee, K. and D.-H. Cho, 2013, Maximizing the capacity of magnetic induction communication for embedded sensor networks in strongly and loosely coupled regions, IEEE Trans. Magn., vol. 49, no. 6, pp. 2946-2952.
McSpadden, J. and J. Mankins, 2002, Space solar power programs and microwave wireless power transmission technology, IEEE Microw. Mag., vol. 3, no. 4, pp. 46-57.
Sun, Z. and I. F. Akyildiz, 2010, Magnetic induction communications for wireless underground sensor networks, IEEE Trans. Antenna Propag., vol. 58, no. 7, pp. 2426-2435.
Tan, X., Z. Sun, and I. F. Akyildiz, A testbed of magnetic induction-based communication system for underground applications, IEEE Antennas Propag. Mag., [Online]. Available: http://arxiv.org/abs/1503.02519
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.