$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Poly-N-acetyllactosamine (poly-LacNAc) 합성에 관여하는 돼지 β-1,3-N-acetylglucosaminyltransferase I (pB3GNT1) 유전자 동정
Identification of the Pig β-1,3-N-acetylglucosaminyltransferase 1 (pB3GNT1) that is Involved in Poly-N-acetyllactosamine (poly-LacNAc) Synthesis 원문보기

생명과학회지 = Journal of life science, v.28 no.4 = no.216, 2018년, pp.389 - 397  

김지윤 (국립축산과학원 동물바이오공학과) ,  황환진 (국립축산과학원 동물바이오공학과) ,  정학재 (국립축산과학원 양돈과) ,  신이치 호치 (신슈대학) ,  박미령 (국립축산과학원 동물바이오공학과) ,  변승준 (국립축산과학원 동물바이오공학과) ,  오건봉 (국립축산과학원 동물바이오공학과) ,  양현 (국립축산과학원 동물바이오공학과) ,  김경운 (국립축산과학원 동물바이오공학과)

초록
AI-Helper 아이콘AI-Helper

당 단백질에 붙어 있는 당사슬 구조는 형질전환 돼지 유즙으로 분비되는 의약용 단백질의 생물학적 활성, 안정성 그리고 안전성에 영향을 줄 수 있다. 형질전환 동물을 이용한 치료용 당 단백질 생산은 유선 세포에서 이루어지는 당사슬 부가능력에 의해 제한되며, 균일한 당사슬 형태를 가지는 당 단백질 생산은 도전 과제로 남아있다. ${\beta}$-1,3-N-acetylglucosaminylatransferase1 (B3GNT1) 유전자는 N-아세틸글루코사민갈락토오스 잔기를 부착시키는 단백질 당화기작에 중요한 효소이지만, 돼지 당 전이효소에 대한 정보는 매우 제한적이다. 따라서, 돼지 B3GNT1 (pB3GNT1) 유전자를 클로닝하고 N-아세틸글루코사민에 갈락토오스 잔기를 부착시키는 기능적 특성을 조사하였다. 몇가지 다른 프라이머를 사용하여 전체 전사영역(ORF)을 함유하는 부분적인 pB3GNT1 mRNA 염기서열을 간 조직으로부터 분리하였다. 클로닝 된 pB3GNT1의 ORF는 1,248개의 뉴클레오티드를 가지며, 415개 아미노산 잔기로 구성되어 있었다. pB3GNT1 유전자의 장기별 발현특성은 성돈 및 자돈의 여러 기관에서 분석하였다. pB3GNT1 mRNA 발현 수준은 심장, 소장 보다는 근육에서 높았지만 폐에서는 낮았다. pB3GNT1의 기능적 특성 분석을 위해 돼지 신장 세포주(PK-15)에서 pB3GNT1 유전자의 안정적인 발현을 확립하였다. 그 결과, PK-15 세포에서 pB3GNT1 발현에 의한 당화 패턴은 총 시알산 증가에는 영향을 미치지 않지만, poly-N-아세틸글루코사민은 증가하는 것으로 나타났다. 본 연구는 생물반응기로 형질전환 돼지를 이용할 때 희망하는 당사슬을 부가하여 치료 가능성을 높이며 개선된 활성을 나타내는 당단백질 생산에 도움이 될 것이다.

Abstract AI-Helper 아이콘AI-Helper

The structure of glycan residues attached to glycoproteins can influence the biological activity, stability, and safety of pharmaceutical proteins delivered from transgenic pig milk. The production of therapeutic glycoprotein in transgenic livestock animals is limited, as the glycosylation of mammar...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • For the cloning of the pB3GNT1 gene with a flag tag at the N-terminal region, the following primers were designed: 5‘-GAA TTC GCC GCC ACC ATG GAT TAC AAG GAT GAC GAC GAT AAG ATG CAG ATG TCG TAC GCC ATC-3’ and 5‘-GCG GCC GCT CAG CAG TGA CGT GGG GAG-3’ (the EcoRI and NotI sites are underlined, and the flag tag sequences are highlighted in bold).
  • In this study, we cloned pig’s B3GNT1 gene and analyzed its function.

이론/모형

  • The 2-ΔΔCT method was used to analyze pB3GNT1 expression.
  • ELISA was performed using the ELISA Starter Accessory Package (Bethyl Laboratories, Montgomery, TX, USA) according to the Vectorlabs method. Total protein lysates (10– 30 μg) from PK-control and PK-pB3 cells were coated onto 96-well plates with coating buffer (0.
본문요약 정보가 도움이 되었나요?

참고문헌 (31)

  1. Bao, X., Kobayashi, M., Hatakeyama, S., Angata, K., Gullberg, D., Nakayama, J., Fukuda, M. N. and Fukuda, M. 2009. Tumor suppressor function of laminin-binding alpha-dystroglycan requires a distinct beta3-N-acetylglucosaminyltransferase. Proc. Natl. Acad. Sci. USA. 106, 12109-12114. 

  2. Biellmann, F., Henion, T. R., Burki, K. and Hennet, T. 2008. Impaired sexual behavior in male mice deficient for the beta1-3 N-acetylglucosaminyltransferase-I gene. Mol. Reprod. Dev. 75, 699-706. 

  3. Bless, E., Raitcheva, D., Henion, T. R., Tobet, S. and Schwarting, G. A. 2006. Lactosamine modulates the rate of migration of GnRH neurons during mouse development. Eur. J. Neurosci. 24, 654-660. 

  4. Dabrowski, U., Hanfland, P., Egge, H., Kuhn, S. and Dabrowski, J. 1984. Immunochemistry of I/i-active oligo- and polyglycosylceramides from rabbit erythrocyte membranes. Determination of branching patterns of a ceramide pentadecasaccharide by 1H nuclear magnetic resonance. J. Biol. Chem. 259, 7648-7651. 

  5. Egan, S., Cohen, B., Sarkar, M., Ying, Y., Cohen, S., Singh, N., Wang, W., Flock, G., Goh, T. and Schachter, H. 2000. Molecular cloning and expression analysis of a mouse UDP-GlcNAc:Gal(beta1-4)Glc(NAc)-R beta1,3-N-acetylglucosaminyltransferase homologous to Drosophila melanogaster Brainiac and the beta1,3-galactosyltransferase family. Glycoconj. J. 17, 867-875. 

  6. Fukuda, M., Dell, A., Oates, J. E. and Fukuda, M. N. 1984. Structure of branched lactosaminoglycan, the carbohydrate moiety of band 3 isolated from adult human erythrocytes. J. Biol. Chem. 259, 8260-8273. 

  7. Fukuda, M., Fukuda, M. N. and Hakomori, S. 1979. Developmental change and genetic defect in the carbohydrate structure of band 3 glycoprotein of human erythrocyte membrane. J. Biol. Chem. 254, 3700-3703. 

  8. Fukuda, M., Spooncer, E., Oates, J. E., Dell, A. and Klock, J. C. 1984. Structure of sialylated fucosyl lactosaminoglycan isolated from human granulocytes. J. Biol. Chem. 259, 10925-10935. 

  9. Fukuda, M. N., Sasaki, H., Lopez, L. and Fukuda, M. 1989. Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 73, 84-89. 

  10. Fukuta, K., Abe, R., Yokomatsu, T., Kono, N., Asanagi, M., Omae, F., Minowa, M. T., Takeuchi, M. and Makino, T. 2000. Remodeling of sugar chain structures of human interferon-gamma. Glycobiology 10, 421-430. 

  11. Fukuta, K., Yokomatsu, T., Abe, R., Asanagi, M. and Makino, T. 2000. Genetic engineering of CHO cells producing human interferon-gamma by transfection of sialyltransferases. Glycoconj. J. 17, 895-904. 

  12. Hakomori, S. 2002. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl. Acad. Sci. USA. 99, 10231-10233. 

  13. Kitazume, S., Imamaki, R., Ogawa, K., Komi, Y., Futakawa, S., Kojima, S., Hashimoto, Y., Marth, J. D., Paulson, J. C. and Taniguchi, N. 2010. Alpha2,6-sialic acid on platelet endothelial cell adhesion molecule (PECAM) regulates its homophilic interactions and downstream antiapoptotic signaling. J. Biol. Chem. 285, 6515-6521. 

  14. Ko, H. K., Song, K. H., Jin, U. H., Seong, H. H., Chang, Y. C., Kim, N. H., Kim, D. S., Lee, Y. C. and Kim, C. H. 2010. Molecular characterization of pig alpha2,3-Gal-beta1,3-GalNAc-alpha2,6-sialyltransferase (pST6GalNAc IV) gene specific for Neu5Acalpha2-3Galbeta1-3GalNAc trisaccharide structure. Glycoconj. J. 27, 367-374. 

  15. Lee, H. G., Lee, H. C., Kim, S. W., Lee, P., Chung, H. J., Lee, Y. K., Han, J. H., Hwang, I. S., Yoo, J. I., Kim, Y. K., Kim, H. T., Lee, H. T., Chang, W. K. and Park, J. K. 2009. Production of recombinant human von Willebrand factor in the milk of transgenic pigs. J. Reprod. Dev. 55, 484-490. 

  16. Lee, M., Park, J. J. and Lee, Y. S. 2010. Adhesion of ST6Gal I-mediated human colon cancer cells to fibronectin contributes to cell survival by integrin beta1-mediated paxillin and AKT activation. Oncol. Rep. 23, 757-761. 

  17. Lee, P. L., Kohler, J. J. and Pfeffer, S. R. 2009. Association of beta-1,3-N-acetylglucosaminyltransferase 1 and beta-1,4-galactosyltransferase 1, trans-Golgi enzymes involved in coupled poly-N-acetyllactosamine synthesis. Glycobiology 19, 655-664. 

  18. Lin, J. T., Bhattacharyya, D. and Kecman, V. 2003. Multiple regression and neural networks analyses in composites machining. Compos. Sci. Technol. 63, 539-548. 

  19. Munro, S. 1998. Localization of proteins to the Golgi apparatus. Trends Cell Biol. 8, 11-15. 

  20. Nairn, A. V., York, W. S., Harris, K., Hall, E. M., Pierce, J. M. and Moremen, K. W. 2008. Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J. Biol. Chem. 283, 17298-17313. 

  21. Park, J. K., Lee, Y. K., Lee, P., Chung, H. J., Kim, S., Lee, H. G., Seo, M. K., Han, J. H., Park, C. G., Kim, H. T., Kim, Y. K., Min, K. S., Kim, J. H., Lee, H. T. and Chang, W. K. 2006. Recombinant human erythropoietin produced in milk of transgenic pigs. J. Biotechnol. 122, 362-371. 

  22. Patsos, G., Robbe-Masselot, C., Klein, A., Hebbe-Viton, V., Martin, R. S., Masselot, D., Graessmann, M., Paraskeva, C., Gallagher, T. and Corfield, A. 2007. O-glycan regulation of apoptosis and proliferation in colorectal cancer cell lines. Biochem. Soc. Trans. 35, 1372-1374. 

  23. Rosen, S. D. and Bertozzi, C. R. 1996. Two selectins converge on sulphate. Leukocyte adhesion. Curr. Biol. 6, 261-264. 

  24. Sasaki, K., Kurata-Miura, K., Ujita, M., Angata, K., Nakagawa, S., Sekine, S., Nishi, T. and Fukuda, M. 1997. Expression cloning of cDNA encoding a human beta-1,3-N-acetylglucosaminyltransferase that is essential for poly-N-acetyllactosamine synthesis. Proc. Natl. Acad. Sci. USA. 94, 14294-14299. 

  25. Seales, E. C., Jurado, G. A., Brunson, B. A., Wakefield, J. K., Frost, A. R. and Bellis, S. L. 2005. Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res. 65, 4645-4652. 

  26. Su, D., Zhao, H. and Xia, H. 2010. Glycosylation-modified erythropoietin with improved half-life and biological activity. Int. J. Hematol. 91, 238-244. 

  27. Swindall, A. F. and Bellis, S. L. 2011. Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J. Biol. Chem. 286, 22982-22990. 

  28. Ujita, M., McAuliffe, J., Hindsgaul, O., Sasaki, K., Fukuda, M. N. and Fukuda, M. 1999. Poly-N-acetyllactosamine synthesis in branched N-glycans is controlled by complemental branch specificity of I-extension enzyme and beta1,4-galactosyltransferase I. J. Biol. Chem. 274, 16717-16726. 

  29. Wu, Z. L., Ethen, C. M., Prather, B., Machacek, M. and Jiang, W. 2011. Universal phosphatase-coupled glycosyltransferase assay. Glycobiology 21, 727-733. 

  30. Yang, Z., Wang, S., Halim, A., Schulz, M. A., Frodin, M., Rahman, S. H., Vester-Christensen, M. B., Behrens, C., Kristensen, C., Vakhrushev, S. Y., Bennett, E. P., Wandall, H. H. and Clausen, H. 2015. Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat. Biotechnol. 33, 842-844. 

  31. Yoshida, A., Minowa, M. T., Takamatsu, S., Hara, T., Oguri, S., Ikenaga, H. and Takeuchi, M. 1999. Tissue specific expression and chromosomal mapping of a human UDP-N-acetylglucosamine: alpha1,3-d-mannoside beta1, 4-N-acetylglucosaminyltransferase. Glycobiology 9, 303-310. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로