$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

마이크로/나노-운반체를 이용한 톡소이드 항원의 효과적인 전달 방법
Efficient Delivery of Toxoid Antigens using Micro/Nano-carriers 원문보기

생명과학회지 = Journal of life science, v.28 no.4 = no.216, 2018년, pp.496 - 507  

박가영 (충북대학교 자연과학대학 미생물학과) ,  안근아 (충북대학교 자연과학대학 미생물학과) ,  이세희 (충북대학교 자연과학대학 미생물학과) ,  김상범 (농촌진흥청 국립축산과학원 낙농과) ,  김양훈 (충북대학교 자연과학대학 미생물학과) ,  안지영 (충북대학교 자연과학대학 미생물학과)

초록
AI-Helper 아이콘AI-Helper

톡소이드는 독성은 제거되고 항원성은 유지시킨 독소 단백질로써, 다양한 병원체의 감염 및 질병 예방을 위해 지속적으로 연구 되었다. 그러나, 톡소이드의 활성 감소 및 이와 함께 사용하는 어쥬번트의 부작용 등이 지속적으로 보고되면서, 면역성은 강화하고 어쥬번트의 사용은 줄일 수 있는 톡소이드 항원 전달 시스템이 필요하게 되었다. 따라서, 이러한 단점을 개선하고자 최근 새로운 백신과 약물 전달수송을 위해 다양한 분야에서 활용하고 있는 마이크로/나노 운반체를 톡소이드 항원에 도입하고 있다. 이와 같은 마이크로/나노 운반체는 미생물 자체를 이용하거나 미생물을 통해 생산해 낼 수도 있으며, 더 나아가 다양한 소재의 폴리머를 이용하여 제작할 수 있다. 본 총설에서는 톡소이드 항원 전달을 위한 마이크로/나노 운반체를 미생물 유래의 ghost cells (GCs), 그람 음성 세균이 분비하는 outer membrane vesicles (OMVs) 및 고분자 폴리머로 구성된 nanoparticles (NPs)으로 분류하였다. 마지막으로 각 운반체에 대한 톡소이드 항원의 전달 방식 및 이를 적용하였을 때 일어나는 면역반응에 대하여 서술하였으며, 이를 통해 향후 톡소이드의 효율 및 부작용이 개선되기를 기대한다.

Abstract AI-Helper 아이콘AI-Helper

Immunization has been performed for centuries and is generally accepted as a sustainable method of controlling bacteria, viruses, and mediated and infectious diseases. Despite many studies having been performed on animal subjects to demonstrate the importance of toxin immunity, the use of toxoid vac...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 최근에는 보다 효과적인 전달 방안으로 마이크로/나노 운반체가 주목 받기 시작하였다[36, 82]. 마이크로/나노 운반체는 마이크로/나노 수준의 크기를 가지며 DNA, 단백질 등의 생체 물질을 운반 할 수 있는 물질로 본 총설에서 규정하였다. 특히, 톡소이드 항원의 전달에 이용되는 마이크로/나노 운반체의 경우 표지/흡착 등의 용이성 및 생체 내 적합성, 생분해성 등이 고려되어야 한다[36, 49, 56].
  • 본 총설에서는 톡소이드 항원 전달을 위한 마이크로/나노 운반체를 미생물 유래의 ghost cells (GCs) 및 그람 음성 세균이 분비하는 outer membrane vesicles (OMVs), 고분자 폴리머로 구성된 nanoparticles (NPs)으로 분류하였으며, 각 운반체의 톡소이드 항원 운반 방식 및 이를 적용하여 나타나는 면역반응에 대하여 서술하였다(Table 1).
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
톡소이드는 무엇인가? 톡소이드는 독성은 제거되고 항원성은 유지시킨 독소 단백질로써, 다양한 병원체의 감염 및 질병 예방을 위해 지속적으로 연구 되었다. 그러나, 톡소이드의 활성 감소 및 이와 함께 사용하는 어쥬번트의 부작용 등이 지속적으로 보고되면서, 면역성은 강화하고 어쥬번트의 사용은 줄일 수 있는 톡소이드 항원 전달 시스템이 필요하게 되었다.
마이크로/나노 운반체를 생산하는 방법은 무엇인가? 따라서, 이러한 단점을 개선하고자 최근 새로운 백신과 약물 전달수송을 위해 다양한 분야에서 활용하고 있는 마이크로/나노 운반체를 톡소이드 항원에 도입하고 있다. 이와 같은 마이크로/나노 운반체는 미생물 자체를 이용하거나 미생물을 통해 생산해 낼 수도 있으며, 더 나아가 다양한 소재의 폴리머를 이용하여 제작할 수 있다. 본 총설에서는 톡소이드 항원 전달을 위한 마이크로/나노 운반체를 미생물 유래의 ghost cells (GCs), 그람 음성 세균이 분비하는 outer membrane vesicles (OMVs) 및 고분자 폴리머로 구성된 nanoparticles (NPs)으로 분류하였다.
Ghost cell은 어떻게 분류할 수 있는가? 이 과정에서 세포의 막 단백질 또는 lipopolysaccharide (LPS)와 같이 세포 표면을 구성하는 성분을 제외한 유전물질, 세포 소기관 등을 세포 내부에서 제거하는 과정이 필수적으로 요구된다[62]. GCs는 기원하는 미생물에 따라 분류할 수 있으며, 크게 원핵세포 생물인 세균에서 유래된 Bacterial Ghost Cells (BGCs)와 진핵세포 생물인 효모에서 유래된 Yeast Ghost Cells (YGCs)으로 나누어진다[40, 63, 70]. GCs의 종류에 따라 톡소이드 항원을 전달하는 방법이 다르다.
질의응답 정보가 도움이 되었나요?

참고문헌 (96)

  1. Amirnasr, M., Fallah Tafti, T., Sankian, M., Rezaei, A. and Tafaghodi, M. 2016. Immunization against HTLV-I with chitosan and tri-methylchitosan nanoparticles loaded with recombinant env23 and env13 antigens of envelope protein gp46. Microb. Pathog. 97, 38-44. 

  2. Baert, K., De Geest, B. G., De Greve, H., Cox, E. and Devriendt, B. 2016. Duality of beta-glucan microparticles: antigen carrier and immunostimulants. Int. J. Nanomedicine 11, 2463-2469. 

  3. Banerjee, A., Qi, J., Gogoi, R., Wong, J. and Mitragotri, S. 2016. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release 238, 176-185. 

  4. Bansal, V., Kumar, M., Dalela, M., Brahmne, H. G. and Singh, H. 2014. Evaluation of synergistic effect of biodegradable polymeric nanoparticles and aluminum based adjuvant for improving vaccine efficacy. Int. J. Pharm. 471, 377-384. 

  5. Bartolini, E., Ianni, E., Frigimelica, E., Petracca, R., Galli, G., Berlanda Scorza, F., Norais, N., Laera, D., Giusti, F., Pierleoni, A., Donati, M., Cevenini, R., Finco, O., Grandi, G. and Grifantini, R. 2013. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro. J. Extracell. Vesicles 2, 1-14. 

  6. Batbayar, S., Lee, D. H. and Kim, H. W. 2012. Immunomodulation of fungal beta-glucan in host defense signaling by dectin-1. Biomol. Ther. (Seoul) 20, 433-445. 

  7. Baxter, D. 2007. Active and passive immunity, vaccine types, excipients and licensing. Occup. Med. (Lond) 57, 552-556. 

  8. Berner, V. K., duPre, S. A., Redelman, D. and Hunter, K. W. 2015. Microparticulate beta-glucan vaccine conjugates phagocytized by dendritic cells activate both naive CD4 and CD8 T cells in vitro. Cell Immunol. 298, 104-114. 

  9. Berner, V. K., Sura, M. E. and Hunter, K. W. J. 2008. Conjugation of protein antigen to microparticulate beta-glucan from Saccharomyces cerevisiae: a new adjuvant for intradermal and oral immunizations. Appl. Microbiol. Biotechnol. 80, 1053-1061. 

  10. Beveridge, T. J. 1999. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181, 4725-4733. 

  11. Biswas, S., Chattopadhyay, M., Sen, K. K. and Saha, M. K. 2015. Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr. Polym. 121, 403-410. 

  12. Brown, G. D., Herre, J., Williams, D. L., Willment, J. A., Marshall, A. S. and Gordon, S. 2003. Dectin-1 mediates the biological effects of beta-glucans. J. Exp. Med. 197, 1119-1124. 

  13. Bystricky, S., Machova, E., Bartek, P., Kolarova, N. and Kogan, G. 2000. Conjugation of yeast mannans with protein employing cyanopyridinium agent (CDAP)--an effective route of antifungal vaccine preparation. Glycoconj. J. 17, 677-680. 

  14. Cai, K., Tu, W., Liu, Y., Li, T. and Wang, H. 2015. Novel fusion antigen displayed-bacterial ghosts vaccine candidate against infection of Escherichia coli O157:H7. Sci. Rep. 5, 1-10. 

  15. Cai, K., Zhang, Y., Yang, B. and Chen, S. 2013. Yersinia enterocolitica ghost with msbB mutation provides protection and reduces proinflammatory cytokines in mice. Vaccine 31, 334-340. 

  16. Canas, M. A., Gimenez, R., Fabrega, M. J., Toloza, L., Baldoma, L. and Badia, J. 2016. Outer membrane vesicles from the probiotic escherichia coli nissle 1917 and the commensal ECOR12 enter intestinal epithelial cells via clathrin-dependent endocytosis and elicit differential effects on DNA damage. PLoS One 11, 1-22. 

  17. Cecil, J. D., O'Brien-Simpson, N. M., Lenzo, J. C., Holden, J. A., Singleton, W., Perez-Gonzalez, A., Mansell, A. and Reynolds, E. C. 2017. Outer membrane vesicles prime and activate macrophage inflammasomes and cytokine secretion in vitro and in vivo. Front. Immunol. 8, 1-22. 

  18. Chudina, T., Labyntsev, A., Manoilov, K., Kolybo, D. and Komisarenko, S. 2015. Cellobiose-coated poly(lactide-coglycolide) particles loaded with diphtheria toxoid for per os immunization. Croat. Med. J. 56, 85-93. 

  19. Conway, M. A., Madrigal-Estebas, L., McClean, S., Brayden, D. J. and Mills, K. H. 2001. Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19, 1940-1950. 

  20. Daleke-Schermerhorn, M. H., Felix, T., Soprova, Z., Ten Hagen-Jongman, C. M., Vikstrom, D., Majlessi, L., Beskers, J., Follmann, F., de Punder, K., van der Wel, N. N., Baumgarten, T., Pham, T. V., Piersma, S. R., Jimenez, C. R., van Ulsen, P., de Gier, J. W., Leclerc, C., Jong, W. S. and Luirink, J. 2014. Decoration of outer membrane vesicles with multiple antigens by using an autotransporter approach. Appl. Environ. Microbiol. 80, 5854-5865. 

  21. De Jong, W. H. and Borm, P. J. 2008. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomedicine 3, 133-149. 

  22. De Smet, R., Demoor, T., Verschuere, S., Dullaers, M., Ostroff, G. R., Leclercq, G., Allais, L., Pilette, C., Dierendonck, M., De Geest, B. G. and Cuvelier, C. A. 2013. beta-Glucan microparticles are good candidates for mucosal antigen delivery in oral vaccination. J. Control. Release 172, 671-678. 

  23. Donato, G. M., Goldsmith, C. S., Paddock, C. D., Eby, J. C., Gray, M. C. and Hewlett, E. L. 2012. Delivery of Bordetella pertussis adenylate cyclase toxin to target cells via outer membrane vesicles. FEBS Lett. 586, 459-465. 

  24. Driscoll, M., Hansen, R., Ding, C., Cramer, D. E. and Yan, J. 2009. Therapeutic potential of various beta-glucan sources in conjunction with anti-tumor monoclonal antibody in cancer therapy. Cancer Biol. Ther. 8, 218-225. 

  25. Ebensen, T., Paukner, S., Link, C., Kudela, P., de Domenico, C., Lubitz, W. and Guzman, C. A. 2004. Bacterial ghosts are an efficient delivery system for DNA vaccines. J. Immunol. 172, 6858-6865. 

  26. Eko, F. O., Lubitz, W., McMillan, L., Ramey, K., Moore, T. T., Ananaba, G. A., Lyn, D., Black, C. M. and Igietseme, J. U. 2003. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine 21, 1694-1703. 

  27. Ellis, T. N. and Kuehn, M. J. 2010. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 74, 81-94. 

  28. Fantappie, L., de Santis, M., Chiarot, E., Carboni, F., Bensi, G., Jousson, O., Margarit, I. and Grandi, G. 2014. Antibody-mediated immunity induced by engineered Escherichia coli OMVs carrying heterologous antigens in their lumen. J. Extracell. Vesicles 3, 1-14. 

  29. Felnerova, D., Kudela, P., Bizik, J., Haslberger, A., Hensel, A., Saalmuller, A. and Lubitz, W. 2004. T cell-specific immune response induced by bacterial ghosts. Med. Sci. Monit. 10, BR362-BR370. 

  30. Fifis, T., Gamvrellis, A., Crimeen-Irwin, B., Pietersz, G. A., Li, J., Mottram, P. L., McKenzie, I. F. and Plebanski, M. 2004. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173, 3148-3154. 

  31. Figueiredo, D., Turcotte, C., Frankel, G., Li, Y., Dolly, O., Wilkin, G., Marriott, D., Fairweather, N. and Dougan, G. 1995. Characterization of recombinant tetanus toxin derivatives suitable for vaccine development. Infect. Immun. 63, 3218-3221. 

  32. Florindo, H. F., Pandit, S., Goncalves, L. M., Alpar, H. O. and Almeida, A. J. 2008. Streptococcus equi antigens adsorbed onto surface modified poly-epsilon-caprolactone microspheres induce humoral and cellular specific immune responses. Vaccine 26, 4168-4177. 

  33. Gerritzen, M .J. H., Martens, D.E., Wijffels, R.H., van der Pol, L. and Stork, M. 2017. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnol. Adv. 35, 565-574. 

  34. Ghalavand, M., Saadati, M., Ahmadi, A., Abbasi, E. and Salimian, J. 2018. Immunological evaluation of chitosan nanoparticles loaded with tetanus toxoid. Bratisl Lek Listy 119, 71-74. 

  35. Goodridge, H. S., Reyes, C. N., Becker, C. A., Katsumoto, T. R., Ma, J., Wolf, A. J., Bose, N., Chan, A.S., Magee, A.S., Danielson, M.E., Weiss, A., Vasilakos, J.P. and Underhill, D.M. 2011. Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'. Nature 472, 471-475. 

  36. Gregory, A. E., Titball, R. and Williamson, D. 2013. Vaccine delivery using nanoparticles. Fron. Cell Infect. Microbiol. 3, 1-13. 

  37. Hajam, I. A., Dar, P. A., Won, G. and Lee, J. H. 2017. Bacterial ghosts as adjuvants: mechanisms and potential. Vet. Res. 48, 1-13. 

  38. Hernanz-Falcon, P., Joffre, O., Williams, D. L. and Reis e Sousa, C. 2009. Internalization of Dectin-1 terminates induction of inflammatory responses. Eur. J. Immunol. 39, 507-513. 

  39. Huang, H., Ostroff, G. R., Lee, C. K., Specht, C. A. and Levitz, S. M. 2010. Robust stimulation of humoral and cellular immune responses following vaccination with antigen-loaded beta-glucan particles. MBio. 1, 1-7. 

  40. Huang, H., Ostroff, G. R., Lee, C. K., Specht, C. A. and Levitz, S. M. 2013. Characterization and optimization of the glucan particle-based vaccine platform. Clin. Vaccine Immunol. 20, 1585-1591. 

  41. Huang, W., Wang, S., Yao, Y., Xia, Y., Yang, X., Li, K., Sun, P., Liu, C., Sun, W., Bai, H., Chu, X., Li, Y. and Ma, Y. 2016. Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elicits protective immunity against Acinetobacter baumannii infection. Sci. Rep. 6, 1-12. 

  42. Hunter, K. W., Jr., Gault, R. A. and Berner, M. D. 2002. Preparation of microparticulate beta-glucan from Saccharomyces cerevisiae for use in immune potentiation. Lett. Appl. Microbiol. 35, 267-271. 

  43. Huter, V., Szostak, M. P., Gampfer, J., Prethaler, S., Wanner, G., Gabor, F. and Lubitz, W. 1999. Bacterial ghosts as drug carrier and targeting vehicles. J. Control. Release 61, 51-63. 

  44. Jain, A. K., Goyal, A. K., Gupta, P. N., Khatri, K., Mishra, N., Mehta, A., Mangal, S. and Vyas, S. P. 2009. Synthesis, characterization and evaluation of novel triblock copolymer based nanoparticles for vaccine delivery against hepatitis B. J. Control. Release 136, 161-169. 

  45. Jan, A. T. 2017. Outer membrane vesicles (OMVs) of gram-negative bacteria: a perspective update. Front. Microbiol. 8, 1-11. 

  46. Jawale, C. V., Chaudhari, A. A. and Lee, J. H. 2014. Generation of a safety enhanced Salmonella Gallinarum ghost using antibiotic resistance free plasmid and its potential as an effective inactivated vaccine candidate against fowl typhoid. Vaccine 32, 1093-1099. 

  47. Jechlinger, W., Haller, C., Resch, S., Hofmann, A., Szostak, M.P. and Lubitz, W. 2005. Comparative immunogenicity of the hepatitis B virus core 149 antigen displayed on the inner and outer membrane of bacterial ghosts. Vaccine 23, 3609-3617. 

  48. Jones, R. G., Liu, Y., Rigsby, P. and Sesardic, D. 2008. An improved method for development of toxoid vaccines and antitoxins. J. Immunol. Methods 337, 42-48. 

  49. Jorquera, P. A. and Tripp, R. A. 2016. Synthetic biodegradable microparticle and nanoparticle vaccines against the respiratory syncytial virus. Vaccines (Basel). 4, 1-14. 

  50. Katare, Y. K., Panda, A. K., Lalwani, K., Haque, I. U. and Ali, M. M. 2003. Potentiation of immune response from polymer-entrapped antigen: toward development of single dose tetanus toxoid vaccine. Drug Deliv. 10, 231-238. 

  51. Kim, C. S., Hur, J., Eo, S. K., Park, S. Y. and Lee, J. H. 2016. Generation of Salmonella ghost cells expressing fimbrial antigens of enterotoxigenic Escherichia coli and evaluation of their antigenicity in a murine model. Can. J. Vet. Res. 80, 40-48. 

  52. Kim, S. W., Gal, S. W., Lee, J. H., Hah, Y. S., Kim, T. W., Kim, C. W., Kim, I. S. and Kim, S. W. 2017. Immune responses of BALB/c mice orally immunized with Salmonella Typhimurium ghost cells carrying antigens of enterotoxigenic Escherichia coli. Veterinarski Arhiv. 87, 87-101. 

  53. Kuehn, M. J. and Kesty, N. C. 2005. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19, 2645-55. 

  54. Kulp, A. and Kuehn, M. J. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163-184. 

  55. Langemann, T., Koller, V.J., Muhammad, A., Kudela, P., Mayr, U. B. and Lubitz, W. 2010. The Bacterial Ghost platform system: production and applications. Bioeng. Bugs 1, 326-336. 

  56. Li, X., Deng, X., Yuan, M., Xiong, C., Huang, Z., Zhang, Y. and Jia, W. 2000. In vitro degradation and release profiles of Poly-DLLactide-Poly (ethylene glycol) microspheres with entrapped proteins. J. Appl. Polym. Sci. 78, 140-148. 

  57. Lim, S. and Yoon, H. 2015. Roles of outer memrane vesicles (OMVs) in bacterial virulence. J. Bacteriol. Virol. 45, 1-10. 

  58. Liu, H., Jia, Z., Yang, C., Song, M., Jing, Z., Zhao, Y., Wu, Z., Zhao, L., Wei, D., Yin, Z. and Hong, Z. 2018. Aluminum hydroxide colloid vaccine encapsulated in yeast shells with enhanced humoral and cellular immune responses. Biomaterials 167, 32-43. 

  59. Manolova, V., Flace, A., Bauer, M., Schwarz, K., Saudan, P. and Bachmann, M. F. 2008. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38, 1404-1413. 

  60. Mansoor, F., Earley, B., Cassidy, J. P., Markey, B., Doherty, S. and Welsh, M. D. 2015. Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves. BMC Vet. Res. 11, 1-11. 

  61. Mashburn-Warren, L., Howe, J., Garidel, P., Richter, W., Steiniger, F., Roessle, M., Brandenburg, K. and Whiteley, M. 2008. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol. Microbiol. 69, 491-502. 

  62. Mayr, U. B., Haller, C., Haidinger, W., Atrasheuskaya, A., Bukin, E., Lubitz, W. and Ignatyev, G. 2005. Bacterial ghosts as an oral vaccine: a single dose of Escherichia coli O157:H7 bacterial ghosts protects mice against lethal challenge. Infect. Immun. 73, 4810-4817. 

  63. Mayr, U. B., Walcher, P., Azimpour, C., Riedmann, E., Haller, C. and Lubitz, W. 2005. Bacterial ghosts as antigen delivery vehicles. Adv. Drug Deliv. Rev. 57, 1381-1391. 

  64. Montanaro, J., Inic-Kanada, A., Ladurner, A., Stein, E., Belij, S., Bintner, N., Schlacher, S., Schuerer, N., Mayr, U. B., Lubitz, W., Leisch, N. and Barisani-Asenbauer, T. 2015. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface. Drug Des. Devel. Ther. 9, 3741-3754. 

  65. Moyle, P. M. and Toth, I. 2013. Modern subunit vaccines: development, components, and research opportunities. Chem. Med. Chem. 8, 360-376. 

  66. Mulcahy, L. A., Pink, R. C. and Carter, D. R. 2014. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 1-14. 

  67. Nagamoto, T., Hattori, Y., Takayama, K. and Maitani, Y. 2004. Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm. Res. 21, 671-674. 

  68. O'Donoghue, E. J. and Krachler, A. M. 2016. Mechanisms of outer membrane vesicle entry into host cells. Cell Microbiol. 18, 1508-1517. 

  69. Oh, N. and Park, J. H. 2014. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomedicine 9 Suppl 1, 51-63. 

  70. Pan, Y., Li, X., Kang, T., Meng, H., Chen, Z., Yang, L., Wu, Y., Wei, Y. and Gou, M. 2015. Efficient delivery of antigen to DCs using yeast-derived microparticles. Sci. Rep. 5, 1-9. 

  71. Park, S. J., Lee, S. J., Kim, K. H. and Kim, S. K. 2011. High cell density fed-batch fermentation for the production of recombinant E. coli K-12 ghost vaccine against streptococcal disease. Biotechnol. Bioprocess Eng. 16, 733-738. 

  72. Prados-Rosales, R., Carreno, L. J., Batista-Gonzalez, A., Baena, A., Venkataswamy, M. M., Xu, J., Yu, X., Wallstrom, G., Magee, D. M., LaBaer, J., Achkar, J. M., Jacobs, W. R. Jr., Chan, J., Porcelli, S. A. and Casadevall, A. 2014. Mycobacterial membrane vesicles administered systemically in mice induce a protective immune response to surface compartments of Mycobacterium tuberculosis. MBio. 5, 1-14. 

  73. Rappaport, R. S., Bonde, G., McCann, T., Rubin, B. A. and Tint, H. 1974. Development of a purified cholera toxoid. II. Preparation of a stable, antigenic toxoid by reaction of purified toxin with glutaraldehyde. Infect. Immun. 9, 304-317. 

  74. Riedmann, E. M., Kyd, J. M., Smith, A. M., Gomez-Gallego, S., Jalava, K., Cripps, A. W. and Lubitz, W. 2003. Construction of recombinant S-layer proteins (rSbsA) and their expression in bacterial ghosts--a delivery system for the nontypeable Haemophilus influenzae antigen Omp26. FEMS Immunol. Med. Microbiol. 37, 185-192. 

  75. Salverda, M. L., Meinderts, S. M., Hamstra, H. J., Wagemakers, A., Hovius, J. W., van der Ark, A., Stork, M. and van der Ley, P. 2016. Surface display of a borrelial lipoprotein on meningococcal outer membrane vesicles. Vaccine 34, 1025-1033. 

  76. Sanchez, A., Villamayor, B., Guo, Y., McIver, J. and Alonso, M. J. 1999. Formulation strategies for the stabilization of tetanus toxoid in poly(lactide-co-glycolide) microspheres. Int. J. Pharm. 185, 255-266. 

  77. Schwendeman, S. P., Costantino, H. R., Gupta, R. K., Siber, G. R., Klibanov, A. M. and Langer, R. 1995. Stabilization of tetanus and diphtheria toxoids against moisture-induced aggregation. Proc. Natl. Acad. Sci. USA. 92, 11234-11238. 

  78. Schwendeman, S. P., Tobio, M., Joworowicz, M., Alonso, M. J. and Langer, R. 1998. New strategies for the microencapsulation of tetanus vaccine. J. Microencapsul. 15, 299-318. 

  79. Schwendener, R. A. 2014. Liposomes as vaccine delivery systems: a review of the recent advances. Ther. Adv. Vaccines 2, 159-182. 

  80. Sharp, F. A., Ruane, D., Claass, B., Creagh, E., Harris, J., Malyala, P., Singh, M., O'Hagan, D. T., Petrilli, V., Tschopp, J., O'Neill, L. A. and Lavelle, E. C. 2009. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl. Acad. Sci. USA. 106, 870-875. 

  81. Siadat, S. D., Vaziri, F., Eftekhary, M., Karbasian, M., Moshiri, A., Aghasadeghi, M. R., Ardestani, M. S., Alitappeh, M. A., Arsang, A., Fateh, A., Peerayeh, S. N. and Bahrmand, A. R. 2015. Preparation and evaluation of a new lipopolysaccharide-based conjugate as a vaccine candidate for brucellosis. Osong Public Health Res. Perspect. 6, 9-13. 

  82. Singh, M. S. and Bhaskar, S. 2014. Nanocarrier-based immunotherapy in cancer management and research. Immunotargets Ther. 3, 121-134. 

  83. Sloat, B. R., Sandoval, M. A., Hau, A. M., He, Y. and Cui, Z. 2010. Strong antibody responses induced by protein antigens conjugated onto the surface of lecithin-based nanoparticles. J. Control. Release 141, 93-100. 

  84. Soares, E., Jesus, S. and Borges, O. 2018. Oral hepatitis B vaccine: chitosan or glucan based delivery systems for efficient HBsAg immunization following subcutaneous priming. Int. J. Pharm. 535, 261-271. 

  85. Soto, E. R. and Ostroff, G. R. 2008. Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA delivery. Bioconjug. Chem. 19, 840-848. 

  86. Tavano, R., Franzoso, S., Cecchini, P., Cartocci, E., Oriente, F., Arico, B. and Papini, E. 2009. The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA- OMVs, without further stimulating their proinflammatory activity on circulating monocytes. J. Leukoc Biol. 86, 143-153. 

  87. Tipper, D. J. and Szomolanyi-Tsuda, E. 2016. Scaffolded antigens in yeast cell particle vaccines provide protection against systemic polyoma virus infection. J. Immunol. Res. 2016, 1-15. 

  88. Vartak, A. and Sucheck, S. J. 2016. Recent advances in subunit vaccine carriers. Vaccines (Basel). 4, 1-18. 

  89. Vinod, N., Oh, S., Kim, S., Choi, C. W., Kim, S. C. and Jung, C. H. 2014. Chemically induced Salmonella enteritidis ghosts as a novel vaccine candidate against virulent challenge in a rat model. Vaccine 32, 3249-3255. 

  90. Walcher, P., Cui, X., Arrow, J. A., Scobie, S., Molinia, F. C., Cowan, P. E., Lubitz, W. and Duckworth, J. A. 2008. Bacterial ghosts as a delivery system for zona pellucida-2 fertility control vaccines for brushtail possums (Trichosurus vulpecula). Vaccine 26, 6832-6838. 

  91. Weiner, A., Mellouk, N., Lopez-Montero, N., Chang, Y. Y., Souque, C., Schmitt, C. and Enninga, J. 2016. Macropinosomes are key players in early shigella invasion and vacuolar escape in epithelial cells. PLoS Pathog. 12, 1-24. 

  92. Wendorf, J., Chesko, J., Kazzaz, J., Ugozzoli, M., Vajdy, M., O'Hagan, D. and Singh, M. 2008. A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum. Vaccin. 4, 44-49. 

  93. Witte, A., Wanner, G., Sulzner, M. and Lubitz, W. 1992. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch. Microbiol. 157, 381-388. 

  94. Xiang, S. D., Scholzen, A., Minigo, G., David, C., Apostolopoulos, V., Mottram, P. L. and Plebanski, M. 2006. Pathogen recognition and development of particulate vaccines: does size matter? Methods 40, 1-9. 

  95. Yan, J., Allendorf, D. J. and Brandley, B. 2005. Yeast whole glucan particle (WGP) beta-glucan in conjunction with antitumour monoclonal antibodies to treat cancer. Expert. Opin. Biol. Ther. 5, 691-702. 

  96. Young, K. D. and Young, R. 1982. Lytic action of cloned phi X174 gene E. J. Virol. 44, 993-1002. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로