$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 원자력시설물 부지의 장기적 안전성 확보를 위한 지질구조 평가
Evaluation on Geological Structures to Secure Long-term Safety of Nuclear Facility Sites 원문보기

자원환경지질 = Economic and environmental geology, v.51 no.2, 2018년, pp.149 - 166  

진광민 (한국지질자원연구원 전략기술연구본부) ,  김영석 (부경대학교 환경해양대학 지구환경과학과)

초록
AI-Helper 아이콘AI-Helper

전 세계적으로 대규모 지진의 발생과 이로 인한 인명피해와 재산피해는 끊임없이 발생하고 있다. 특히 일본의 동일본 대지진(M=9.0; 2011. 3. 11.)은 이로 인한 쓰나미의 발생으로 상당한 인명피해와 경제적 손실을 가져왔고, 후쿠시마 원전사고를 유발하였다. 대부분의 지진은 기존 활성단층들의 재활성에 의해 발생한다. 따라서 활성단층에 의한 지진의 재발특성을 이해하기 위한 고지진학적 연구가 활발히 수행되고 있다. 우리나라는 유라시아판 내부에 위치하여 이웃한 일본이나 대만과 같은 나라들에 비해 지진으로부터 안전지대로 여겨져 왔다. 그러나 최근 경주지진(M=5.8; 2016. 9. 12.)과 포항지진(M=5.4; 2017, 11. 15.)으로 인해 우리나라에서도 지진재해에 대한 불안감이 증가하고 있다. 특히 이 지역은 많은 원자력관련 시설물들과 대규모 산업단지가 밀집되어 있는 지역들로 지진재해로부터 극도의 안전성이 확보되어야 한다. 그러나 한반도 남동부의 경우 대규모 지진들이 제4기뿐만 아니라 역사시대에도 자주 발생한 것으로 보고되고 있다. 따라서 지진에 의한 피해를 줄이기 위해서는 활성단층을 추적하고, 활성단층을 따른 지표파열의 특성을 파악하여 해당지역에서의 지진과 단층의 거동특성을 이해하는 것이 중요하다. 이 연구에서는 극도의 안전성 확보가 필요한 원자력관련시설물들의 부지 선정을 위한 활성단층, 단층손상대, 지진과 활성단층의 상관성, 그리고 이격거리 등의 구조지질학적 평가방법을 설명하고, 이를 통해 안전한 원자력관련 시설물의 부지선정뿐만 아니라 지진재해와 방재에 유용한 정보를 제공하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Many large earthquakes have continuously been reported and resulted in significant human casualties and extensive damages to properties globally. The accident of Fukushima nuclear power plant in Japan was caused by a mega-tsunami, which is a secondary effect associated with the Tohoku large earthqua...

Keyword

질의응답

핵심어 질문 논문에서 추출한 답변
제4기 단층은 무엇인가? , 2011). 이 정의에 따르면 제4기 단층은 현재로부터 약 258만년 이전 이내의 제4기의 지층을 절단하고 있는 단층을 의미하며, 활동성 단층은 5만년 이내에 한 번 이상 활동하거나 50만년 이내에 두 번 이상 활동한 단층을 의미하며, 이는 주로 원전관련시설의 부지선정과 규제에 사용되고 있으며, 미국 등에서는 활성단층은 제4기 후기인 홀로세(지금으로부터 11,000년 이내) 에 활동한 단층을 의미하는 용어로 사용되어 왔다. 그러나 최근 미국과 일본 등에서도 기존의 활성단층 연대범위를 벗어나는 단층이 재활성하는 경우들이 보고되면서 활성단층의 범위를 넓혀가는 추세이다.
활성단층의 정의를 하나로 통일하기 어려운 이유는? , 2011). 이는 근본적으로 ‘활성단층’이란 ‘최근 지질시대에 활동을 하였고, 미래에 다시 활동할 가능성이 있는 단층’이라는 개념적 정의에서 시작되었기 때문이다. 즉 다시 활동할 가능성이 있는 단층을 평가하는 것이 학자마다 지체구조적 특성에 따라 다르기 때문에 숫자로 정확히 일관되게 정의하기 어렵다는 것이다. 우리나라에서는 활성단층과 관련된 용어 사용에서 여전히 많은 혼동이 있지만 구별이 상대적으로 쉬운 제4기 지층을 절단한 단층인 제4기 단층(Quaternary fault), 원자력 관련분야에서 사용하는 활동성 단층(capable fault)과 홀로세에 활동한 활성단층(active fault)으로 제시하는 연구자들이 많이 있었다(Kim et al.
단층대에 대한 정밀한 연구의 이점은 무엇인가? 단층대에 대한 정밀한 연구는 단층활동으로 인한 지진발생 특성을 파악하고 지진재해를 평가하고 예방하는데 많은 기여를 하고 있다(e.g.
질의응답 정보가 도움이 되었나요?

참고문헌 (69)

  1. Abrahamson, N.A. and Somerville, P.G. (1996) Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake. Bulletin of the Seismological Society of America, v.86, p.S93-S99. 

  2. Ambraseys, N.N. (2006) Earthquakes and archaeology. Journal of Archaeological Science, v.33, p.1008-1016. 

  3. Berg, S.S. and Skar, T. (2005) Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah. Journal of Structural Geology, v.27, p.1803-1822. 

  4. Brogi, A. (2008) Fault zone architecture and permeability features in siliceous sedimentary rocks: Insights from the Rapolano geothermal area (Northern Apennines, Italy). Journal of Structural Geology, v.30, p.237-256. 

  5. Chang, T.W. (2001) Quaternary tectonic activity at the Eastern Block of the Ulsan Fault. Journal of the Geological Society of Korea, v.37, p.431-444 (in Korean with English abstract). 

  6. Chester, F.M., Evans, J.P. and Biegel, R.L. (1993) Internal structure and weakening mechanisms of the San Andreas Fault. Journal of Geophysical Research, v.98 (B1), p.771-786. 

  7. Choi, J.-H., Yang, S.-J. and Kim, Y.-S. (2009) Fault zone classification and structural characteristics of the southern Yangsan fault in the Sangcheon-ri area, SE Korea. Journal of the Geological Society of Korea, v.45(1), p.9-28 (in Korean with English abstract). 

  8. Choi, J.-H., Edwards, P., Ko, K. and Kim, Y.-S. (2016) Definition and classification of fault damage zones: A review and a new methodological approach. Earth- Science Reviews, v.152, p.70-87. 

  9. Choi, J.-H., Kim, Y.-S. and Klinger, Y. (2017) Recent progress in studies on the characteristics of surface rupture associated with large earthquake. Journal of the Geological Society of Korea, v.53, p.129-157. 

  10. Das, S. and Henry, C. (2003) Spatial relation between main earthquake slip and its aftershock distribution. Reviews of Geophysics, v.41(3), p.1013. 

  11. Du, Y. and Aydin, A. (1995) Shear fracture patterns and connectivity at geometric complexities along strikeslip faults. Journal of Geophysical Research, v.100, p.18093-18102. 

  12. Han, S.-R., Park, J.Y. and Kim, Y.-S. (2009) Evolution modeling of the Yangsan-Ulsan fault system with stress changes. Journal of the Geological Society of Korea, v.45, p.361-377 (in Korean with English abstract). 

  13. Harris, S.D., Vaszi, A.Z. and Knipe, R.J. (2007) Threedimensional upscaling of fault damage zones for reservoir simulation. Geological Society of London, Special Publications, v.292, p.353-374. 

  14. Hwang, H.Y. (2000) Taiwan Chi-Chi earthquake 9.21.99. Bird's eye view of Cher-Lung-Pu fault. Flying Tiger Cultural Publ. Taipei, Taiwan, 435p. 

  15. Hyndman, D. and Hyndman, D. (2006) Natural Hazard and Disaster. Thomson Learning, 533p. 

  16. Jin, K., Lee, M. and Kim, Y.-S. (2009) Geological study on the collapse of a carved stone Buddha statue in Yeolam valley of Namsan, Gyeongju, Korea. Journal of the Geological Society of Korea, v.45, p.235-247 (in Korean with English abstract). 

  17. Jin, K. and Kim, Y.-S. (2010) Review and new interpretation for the propagation characteristics associated with the 1999 Chi-Chi earthquake faulting event. Island Arc, v.19, p.659-675. 

  18. Jin, K., Lee, M., Kim, Y.-S. and Choi, J.-H. (2011) Archaeoseismological studies on historical heritages sites in the Gyeongju area, SE Korea. Quaternary International, v.242, p.158-170. 

  19. Jin, K., Kim, Y.-S., Yang, S.-J., Choi, J.-H. and Kim, K.-O. (2018) Deformation history and characteristics of the Ilgwang Fault in Southeast Korea. Geosciences Journal, v.22, p.209-226. 

  20. Johnson, C.E. and Hutton, L.K. (1982) Aftershocks and pre-earthquake seismicity, the Imperial Valley, California, earthquake, October 15, 1979. USGS 1254, 59-76. 

  21. Karcz, I., Kafri, U. and Meshel, Z. (1977) Archaeological evidence for Subrecent seismic activity along the Dead Sea-Jordan Rift, Nature, v.269, p.234-235. 

  22. Kee, W.-S., Kim, B.C., Hwang, J.H., Song, K.-Y. and Khim, Y.-H. (2007) Structural characteristics of Quaternary reverse faulting of the Eupcheon Fault, SE Korea. Journal of the Geological Society of Korea, v.43, p.311-333. 

  23. Kee, W.-S., Kihm, Y.H., Lee, H., Cho, D.L., Kim, B.C., Song, K.-Y., Koh, H.J., Lee, S.R., Yeon, Y.-K., Hwang, S., Park, K,G. and Seong, N.-H. (2009) Evaluation and database construction of Quaternary faults in SE Korea. Korea Institute of Geoscience and Mineral Resources IP2006-047-2009(1), 327p. (in Korean). 

  24. Kim, Y.-S. and Sanderson, D.J. (2005) The relationship between displacement and length of faults: a review. Earth-Science Reviews, v.68, p.317-334. 

  25. Kim, Y.-S. and Sanderson, D.J. (2008) Earthquake and fault propagation, displacement and damage zones. In: Landowe, S.J., Hammler, G.M. (eds.), Structural Geology: New Research. Nova Sciences, Hauppauge, New York, 99-117. 

  26. Kim, Y.-S. and Sanderson, D.J. (2010) Inferred fluid flow through fault damage zones based on the observation of stalactites in carbonate caves. Journal of Structural Geology, v.32, p.1305-1316. 

  27. Kim, Y.-S., Jin, K., Choi, W.-H. and Kee W-S. (2011) Understanding of active faults: A review for recent researches. Journal of the Geological Society of Korea, v.47, p.723-752 (in Korean with English abstract). 

  28. Kim, Y.-S., Peacock, D.C.P. and Sanderson, D.J. (2003) Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, v.25, p.793-812. 

  29. Kim, Y.-S., Park, J.Y., Kim, J.H., Shin, H.J. and Sanderson, D.J. (2004a) Thrust geometries in unconsolidated Quaternary sediments and evolution of the Eupchon Fault, southeast Korea. The Island Arc, v.13, p.403-415. 

  30. Kim, Y.-S., Peacock, D.C.P. and Sanderson, D.J. (2004b) The fault damage zones. Journal of Structural Geology, v.26, p.503-517. 

  31. King, G.C.P., Stein, R.S. and Lin, J. (1994) Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, v.84(3), p.935-953. 

  32. King, G.C. and Nabelek, J. (1985) The role of fault bends in faults in the initiation and termination of earthquake rupture. Science, v.228, p.984-987. 

  33. Korea Power Engineering Company (KOPEC) (2002). The preliminary site assessment report (PSAR) for the new Weolsung reactors 1 and 2. (unpublished report) 251-281 (in Korean). 

  34. Klinger, Y. (2010) Relation between continental strikeslip earthquake segmentation and thickness of the crust. Journal of Geophysical Research, v.115, p.B07306. 

  35. Kyung, J.B. (1997) Paleoseismological study on the Midnorthern part of the Ulsan Fault by trench method. Jour. Eng. Geology, v.7, n.1, p.81-90. 

  36. Kyung, J.B. (2003) Paleoseismology of the Yangsan fault, southeastern part of the Korean peninsula, Annals of Geophysics, v.46, p.983-996. 

  37. Kyung, J.B. and Chang, T.W. (2001) The Latest Fault Movement on the Northern Yangsan Faultt Zone around the Yugye-Ri Area, Southeast Korea. Journal of the Geological Society of Korea, v.37, p.563-577 (in Korean with English abstract). 

  38. Kyung, J.B. and Lee, K. (2006) Active fault study of the Yangsan Fault System and Ulsan Fault System, southeastern part of the Korean Peninsula. Journal of Korean Geophysical Society, v.9, p.219-230. 

  39. Leckenby, R.J., Sanderson, D.J. and Lonergan, L. (2005) Estimating flow heterogeneity in natural fracture systems. Journal of Volcanology and Geothermal Research, v.148, p.116-129. 

  40. Lee, K. and Na, S.H. (1983) A study of microearthquake activity of the Yangsan fault. Journal of Geological Society of Korea 19, 127-135 (in Korean with English abstract). 

  41. Lee, K. (1998) Historical earthquake data of Korea. Journal of the Korean Geophysical Society 1, 3-22 (in Korean with English abstract). 

  42. Manepally, C., Fedors, R., Basagaoglu, H., Ofoegbu, G., and Pabalan, R. (2011) Coupled processes workshop report. U.S. Nuclear Regulatory Commission Contract NRC-02-07-006. 

  43. Manighetti, I., Campillo, M., Sammis, C., Mai, P.M. and King, G. (2005) Evidence for self-similar, triangular slip distributions on earthquakes: Implications for earthquake and fault mechanics. Journal of Geophysical Research, v.110, p.B05302. 

  44. McCalpin, J.P. (2009) Paleoseismology: 2nd ed. Academic Press, San Diego, 613p. 

  45. Micklethwaite, S. and Cox, S.F. (2004) Fault-segment rupture, aftershock-zone fluid flow, and mineralization. Geology, v.32, p.813-816. 

  46. Micklethwaite, S. and Cox, S.F. (2006) Progressive fault triggering and fluid flow in aftershock domains: Examples from mineralized Archaean fault systems. Earth and Planetary Science Letters, v.250, p.318-330. 

  47. Ministry of Trade, Industry and Energy (2015) Nuclear power generation. Human culture arirang. 243-245. 

  48. Munier, R. and Hokmark, H. (2004) Respect distaces. Rationale and means of computation. R-report SKB R-04-17. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Company. 

  49. National Emergency Management Agency (2012) Active Fault Map and Seismic Hazard Map. NEMA-Nature-2009-24, 899p. 

  50. Okada, A., Watanabe, M., Sato, H., Jun, M.S., Jo, W.R., Kim, S.K., Jeon, J.S., Chi, H.C. and Oike, K. (1994) Active fault topography and trench survey in the central part of the Yangsan fault, southeast Korea. Journal of Geography, v.103, p.111-126 (in Japanese). 

  51. Okada, A., Watanabe, M., Suzuki, Y., Kyung, J. B., Jo, W. R., Kim, S. K. and Oike, K. (1995) Active fault topography and fault outcrops in the central part of the Ulsan fault system, southeast Korea. Proceeding of 1995 Japan Earth and Planetary Science Joint Meeting(abstract). 

  52. Okada, A., Watanabe, M., Suzuki, Y., Kyung, J. B., Jo, W. R., Kim, S. K., Oike, K. and Makamura, T. (1998) Active fault topography and fault outcrops in the central part of the Ulsan fault system, southeast Korea. Joural of Geography, v.107, p.644-658.(in Japanese). 

  53. Ota, Y., Chen, Y.-G. and Chen, W.-S. (2005). Review of paleoseismological and active fault studies in Taiwan in the light of the Chichi earthquake of September 21, 1999. Tectonophysics, v.408, p.63-77. 

  54. Perfettini, H. and Avouac, J.-P. (2007) Modeling afterslip and aftershocks following the 1992 Landers earthquake. Journal of Geophysical Research, v.112, p.B07409. 

  55. Reilinger, R.E., Ergintav, S., Burgmann, R., McClusky, S., Lenk, O., Barka, A., Gurkan, O., Hearn, L., Feigi, K.L., Cakmak, R., Aktug, B., Ozener, H. and Toksoz, M.N. (2000) Coseismic and Postseismic Fault Slip for the 17 August 1999, M7.5, Izmit, Turkey Earthquake. Science, v.289, p.1519-1524. 

  56. Riley, P.R., Goodwin, L.B. and Lewis, C.J. (2010) Controls on fault damage zone width, structure, and symmetry in the Bandelier Tuff, New Mexico. Journal of Structural Geology, v.32, p.766-780. 

  57. Sanderson, D.J. and Zhang, D. (1999) Critical stress localization of flow associated with deformation of well-fractured rock masses, with implications for mineral deposits. In: McCaffrey, K.J.W., Lonergan, L., Wilkinson, J.J. (Eds.), Fractures, Fluid Flow and Mineralisation. Special Publications, Vol. 155. Geological Society, London, 69-81. 

  58. Scholz, C. (2002) The Mechanics of Earthquakes and Faulting: 2nd ed. Cambridge University Press, Cambridge, 470p. 

  59. Segall, P. and Pollard, D.D. (1983) Nucleation and growth of strike-slip faults in granite. Journal of Geophysical Research, v.88, p.555-568. 

  60. Sibson, R.H. (1989) Earthquake faulting as a structural process. Journal of Structural Geology, v.11(1-2), p.1-14. 

  61. Sibson, R.H. (2003) Thickness of the seismic slip zone. Bulletin of the Seismological Society of America, v.93(3), p.1169-1178. 

  62. Smith-Konter, B.R., Sandwell, D.T. and Shearer, P. (2011) Locking depths estimated from geodesy and seismology along the San Andreas Fault System: Implications for seismic moment release. Journal of Geophysical Research, 116(B6). 

  63. Soliva, R., Benedicto, A., Schultz, R.A., Maerten, L. and Micarellie, L. (2008) Displacement and interaction of normal fault segments branched at depth: Implications for fault growth and potential earthquake rupture size. Journal of Structural Geology, v.30(10), p.1288-1299. 

  64. Stein, R.S., Barka, A.A. and Dieterich, J.H. (1997) Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal of International, v.128, p.594-604. 

  65. Thomas, M.Y., Avouac, J.-P., Gratier, J.-P. and Lee, J.-C. (2014) Lithological control on the deformation mechanism and the mode of fault slip on the Longitudinal Valley Fault, Taiwan. Tectonophysics, v.632, p.48-63. 

  66. Wesnousky, S.G. (2008) Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture. Bulletin of the Seismological Society of America, v.98, p.1609-1632. 

  67. Yagi, Y. and Fukahata, Y. (2011) Rupture process of the 2011 Tohoku-oki earthquake and absolute elastic strain release. Geophys. Res. Lett., v.38, p.L19307. 

  68. Yu, Y.-X. and Gao, M.-T. (2001) Effects of the hanging wall and footwall on peak acceleration during the Jiji (Chi-Chi) earthquake, Taiwan Province. Acta Seismologica Sinica, v.14, p.654-659. 

  69. Zhang, Y., Schaubs, P.M., Zhao, C., Ord, A., Hobbs, B.E. and Barnicoat, A.C. (2008) Fault-related dilation, permeability enhancement, fluid flow and mineral precipitation patterns: numerical models. In: Wibberley, C.A.J., Kurz, W., Imber, J., Holdsworth, R.E., Collettini, C. (Eds.), The Internal Structure of Fault Zones: Implications for Mechanical and Fluid-Flow Properties. Special Publications, Vol. 299. Geological Society, London, pp. 239-255. 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로