$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 굴참나무 촉매열분해에 바이오매스 반탄화가 미치는 영향
The Effect of Biomass Torrefaction on the Catalytic Pyrolysis of Korean Cork Oak 원문보기

공업화학 = Applied chemistry for engineering, v.29 no.3, 2018년, pp.350 - 355  

이지영 (한국생산기술연구원 국가산업융합지원센터) ,  이형원 (서울시립대학교 환경공학부) ,  김영민 (서울시립대학교 환경공학부) ,  박영권 (서울시립대학교 환경공학부)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 굴참나무의 열분해촉매 열분해바이오매스 반탄화가 미치는 영향에 대한 연구를 수행하였다. 굴참나무와 반탄화된 굴참나무의 열분해 및 촉매 열분해 거동은 열중량분석 결과와 회분식반응기를 이용한 급속열분해 반응에서 얻어진 바이오오일의 생성물분포를 비교하여 평가하였다. 굴참나무와 반탄화된 굴참나무의 열중량 곡선 및 미중열중량곡선은 굴참나무 내 헤미셀룰로오스의 제거량은 반탄화 온도 및 시간을 증가시킴에 따라 증가됨을 나타내었다. 굴참나무의 반탄화과정에서 헤미셀룰로오스의 제거로 굴참나무 내 셀룰로오스와 리그닌의 함량이 증가되기 때문에 열분해 과정에서 오일의 수율은 감소하고 고형 촤 수율은 증가하였다. 반탄화 굴참나무의 열분해 오일 중 레보글루코산과 페놀류선택도는 굴참나무 열분해 오일에 비해 높았다. 바이오오일 중 방향족 화합물의 함량은 HZSM-5 ($SiO_2/Al_2O_3=30$) 상에서 굴참나무 및 반탄화된 굴참나무의 촉매열분해를 적용함으로써 증가되었다. 굴참나무에 비해, 반탄화 굴참나무는 HZSM-5를 이용한 촉매 열분해를 통한 방향족화합물 형성에 더 높은 효율을 보였고 더 높은 반탄화 온도($280^{\circ}C$) 및 반응온도($600^{\circ}C$)를 적용함으로써 극대화되었다.

Abstract AI-Helper 아이콘AI-Helper

In this study, the effect of biomass torrefaction on the thermal and catalytic pyrolysis of cork oak was investigated. The thermal and catalytic pyrolysis behavior of cork oak (CO) and torrefied CO (TCO) were evaluated by comparing their thermogravimetric (TG) analysis results and product distributi...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In this study, the effect of torreaction on thermal and catalytic pyrolysis of CO was investigated to increase the amount of value added chemicals in the product oil. By applying the torrefaction of CO at higher temperature and time, the content of C and fixed carbon were increased together with the decrease of O and volatile contents due to the elimination of hemicellulose.
본문요약 정보가 도움이 되었나요?

참고문헌 (21)

  1. J. S. Cha, S. H. Park, S. C. Jung, C. Ryu, J. K. Jeon, M. C. Shin, and Y. K. Park, Production and utilization of biochar: A review, J. Ind. Eng. Chem., 40, 1-15 (2016). 

  2. H. W. Lee, Y. M. Kim, J. Jae, J. K. Jeon, S. C. Jung, S. C. Kim, and Y. K. Park, Production of aromatic hydrocarbons via catalytic co-pyrolysis of torrefied cellulose and polypropylene, Energy Convers. Manag., 129, 81-88 (2016). 

  3. J. Corton, I. S. Donnison, M. Patel, L. Buhle, E. Hodgson, M. Wachendorf, A. Bridgwater, G. Allison, and M. D. Fraser, Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes, Appl. Energy, 177, 852-862 (2016). 

  4. H. Shafaghat, P. S. Rezaei, D. Ro, J. Jae, B. S. Kim, S. C. Jung, B. H. Sung, and Y. K. Park, In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer, J. Ind. Eng. Chem., 54, 447-453 (2017). 

  5. H. Lee, Y. M. Kim, I. G. Lee, J. K. Jeon, S. C. Jung, J. D. Chung, W. G. Choi, and Y. K. Park, Recent advances in the catalytic hydrodeoxygenation of bio-oil, Korean J. Chem. Eng., 33(2), 3299-3315 (2016). 

  6. H. Kim, H. Shafaghat, J. K. Kim, B. S. Kang, J. K. Jeon, S. C. Jung, I. G. Lee, and Y. K. Park, Stabilization of bio-oil over a low cost dolomite catalyst, Korean J. Chem. Eng., 35(4), 922-925 (2018). 

  7. J. Meng, J. Park, D. Tilotta, and S. Park, The effect of torrefaction on the chemistry of fast pyrolysis bio-oil, Bioresour. Technol., 111, 439-446 (2012). 

  8. S. Sadaka and S. Negi, Improvements of biomass physical and thermochemical characteristics via torrefaction process, Environ. Prog. Sustain. Energy, 28, 427-434 (2009). 

  9. Y. M. Kim, J. Jae, B. S. Kim, Y. Hong, S. C. Jung, and Y. K. Park, Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts, Energy Convers. Manag., 149, 966-973 (2017). 

  10. S. Neupane, S. Adhikari, Z. Wang, A. J. Ragauskas, and Y. Pu, Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis, Green Chem., 17, 2406-2417 (2015). 

  11. D. Chen, Y. Li, M. Deng, J. Wang, M. Chen, B. Yan, and Q. Yuan, Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood, Bioresour. Technol., 214, 615-622 (2016). 

  12. L. E. Arteaga-Perez, O. G. Capiro, R. Romero, A. Delgado, P. Olivera, F. Ronsse, and R. Jimenez, In situ catalytic fast pyrolysis of crude and torrefied Eucalyptus globulus using carbon aerogel-supported catalysts, Energy, 128, 701-712 (2017). 

  13. V. Srinivasan, S. Adhikari, S. A. Chattanathan, M. Tu, and S. Park, Catalytic pyrolysis of raw and thermally treated cellulose using different acidic zeolites, BioEnergy Res., 7, 867-875 (2014). 

  14. S. Adhikari, V. Srinivasan, and O. Fasina, Catalytic pyrolysis of raw and thermally treated lignin using different acidic zeolites, Energy Fuels, 28, 4532-4538 (2014). 

  15. R. Mahadevan, S. Adhikari, R. Shakya, K. Wang, D. C. Dayton, M. Li, Y. Pu, and A. J. Ragauskas, Effect of torrefaction temperature on lignin macromolecule and product distribution from HZSM-5 catalytic pyrolysis, J. Anal. Appl. Pyrolysis, 122, 95-105 (2016). 

  16. M. Atienza-Martinez, I. Rubio, I. Fonts, J. Ceamanos, and G. Gea, Effect of torrefaction on the catalytic post-treatment of sewage sludge pyrolysis vapors using ${\gamma}-Al_2O_3$ , Chem. Eng. J., 308, 264-274 (2017). 

  17. H. W. Lee, Y. M. Kim, J. Jae, B. H. Sung, S. C. Jung, S. C. Kim, J. K. Jeon, and Y. K. Park, Catalytic pyrolysis of lignin using a two-stage fixed bed reactor comprised of in-situ natural zeolite and ex-situ HZSM-5, J. Anal. Appl. Pyrolysis, 122, 282-288 (2016). 

  18. Y. M. Kim, B. S. Kim, K. S. Chea, T. S. Jo, S. Kim, and Y. K. Park, Ex-situ catalytic pyrolysis of Korean native oak tree over microporous zeolites, Appl. Chem. Eng., 27(4), 407-414 (2016). 

  19. E. Barta-Rajnai, L. Wang, Z. Sebestyen, Z. Barta, R. Khalil, O. Skreiberg, M. Gronli, E. Jakab, and Z. Czegeny, Effect of temperature and duration of torrefaction on the thermal behavior of stem wood, bark, and stump of spruce, Energy Procedia, 105, 551-556 (2017). 

  20. A. Zheng, Z. Zhao, S. Chang, Z. Huang, X. Wang, F. He, and A. Li, Effect of torrefaction on structure and fast pyrolysis behavior of corncobs, Bioresour. Technol., 128, 370-377 (2013). 

  21. A. Zheng, Z. Zhao, Z. Huang, K. Zhao, G. Wei, X. Wang, F. He, and H. Li, Catalytic fast pyrolysis of biomass pretreated by torrefaction with varying severity, Energy Fuel, 28, 5804-5811 (2014). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로