$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

방사선분자변환기술 기반 천연 생물소재 구조변환에 따른 가공적성 및 생리활성 증진 연구
Improvement of physiological activity and processing quality through structural transformation of natural biomaterials based on radiation technology 원문보기

한국식품과학회지 = Korean journal of food science and technology, v.50 no.3, 2018년, pp.249 - 259  

변의백 (한국원자력연구원 첨단방사선연구소) ,  송하연 (한국원자력연구원 첨단방사선연구소) ,  김혜민 (한국원자력연구원 첨단방사선연구소) ,  김우식 (한국원자력연구원 첨단방사선연구소) ,  이승식 (한국원자력연구원 첨단방사선연구소) ,  최대성 (한국원자력연구원 첨단방사선연구소) ,  임상용 (한국원자력연구원 첨단방사선연구소) ,  정병엽 (한국원자력연구원 첨단방사선연구소)

Abstract AI-Helper 아이콘AI-Helper

Radiation technology (RT) has long been applied in various fields for increasing the safety and shelf-life of foods by controlling pathogen-induced poisoning. RT was introduced for the first time in Korea in the 1950s to eliminate harmful microorganisms in food materials. In the 1980s, RT had been s...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이를 바탕으로 본 논문에서는 천연물 자원의 한계성을 극복하고 미래대체자원으로써의 이용률을 높이는 것뿐만 아니라, 다양한 기능성을 부각시킨 고부가가치의 바이오·의료소재 개발 및 실용화 활용을 위해 부각되고 있는 방사선분자변환기술(RTT)에 대해서 소개하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
식품멸균이 요구되는 곳에 방사선 조사 기술이 사용된 사례는? 이러한 기술은 2000년대 초반까지 효과적인 식품멸균이 필요한 특수목적 식품을 개발하는데 이용되었다. 그 예로, 미육군(U.S. Army)은 군 급식체계에서 방사선 조사기술을 적용한 전투식량을 개발하여 실용화 하였으며, 미우주항공국(NASA)에서는 방사선 조사기술을 이용하여 식품의 영양과 관능적인 특성변화를 최소화하면서 멸균된 우주식량을 개발하였다(Farkas와 Mohácsi-Farkas, 2011; Perchonok과 Bourland, 2002). 또한 방사선 이용 천연 생물소재의 색상개선, 불순물 제거 및 기능성 향상 기술 등 생물소재의 산업 적용성을 증대시키는 기술로서 녹차 추출물 화장품을 개발하는데 이용되었다(Lee 등, 2006).
방사선기술이 연계하고 있는 각 산업 분야는? 방사선기술(RT, Radiation Technology)은 첨단의료기술, 우주기술, 국방기술, 생명공학기술, 나노기술, 정보기술, 환경기술 등과 연계하여 산업 각 분야에 복합 융합기술로 발전하고 있는 추세이다. 다양한 분야에서 사용되고 있는 방사선의 종류에는 방사선 동위원소로부터 방출되는 α (알파), β (베타), γ (감마)선, 기계적으로 발생되는 X선, 전자가속기에서 나오는 전자선, 원자로에서 만들 수 있는 중성자선 등이 있다.
방사선의 종류에는 어떠한 것들이 있는가? 방사선기술(RT, Radiation Technology)은 첨단의료기술, 우주기술, 국방기술, 생명공학기술, 나노기술, 정보기술, 환경기술 등과 연계하여 산업 각 분야에 복합 융합기술로 발전하고 있는 추세이다. 다양한 분야에서 사용되고 있는 방사선의 종류에는 방사선 동위원소로부터 방출되는 α (알파), β (베타), γ (감마)선, 기계적으로 발생되는 X선, 전자가속기에서 나오는 전자선, 원자로에서 만들 수 있는 중성자선 등이 있다. 이중 감마선은 식품 및 공중보건산업 분야에서 널리 사용되고 있으며, 투과력이 약한 전자선이나 일부 의약품 및 의료용품에 사용되는 X선은 이용분야가 제한적이다(Siegbahn과 Axel, 1966).
질의응답 정보가 도움이 되었나요?

참고문헌 (92)

  1. Ahn H, Yook H, Rhee M, Lee C, Cho Y, Byun M. Application of Gamma Irradiation on Breakdown of Hazardous Volatile N-Nitrosamines. J. Food Sci. 67: 596-599 (2002) 

  2. Albano E, Tomasi A, Persson JO, Terelius Y, Goria-Gatti L, Ingelman-Sundberg M, Dianzani MU. Role of ethanol-inducible cytochrome P450 (P450IIE1) in catalysing the free radical activation of aliphatic alcohols. Biochem. Pharmacol. 41: 1895-1902 (1991) 

  3. Badaboina S, Bai HW, Na YH, Park CH, Kim TH, Lee TH, Chung BY. Novel radiolytic rotenone derivative, rotenoisin B with potent anti-carcinogenic activity in hepatic cancer cells. Int. J. Mol. Sci. 16: 16806-16815 (2015) 

  4. BeMiller J, Bohn J. ${\beta}$ -D-Glucans as biological response modifiers: a review of structure-functional activity. Carbohydr. Polym. 28: 3-14 (1995) 

  5. Byun MW. Research status of south korea for food-irradiated technology. Food Sci. Ind. 31: 19-24 (1998) 

  6. Byun EB, Jang BS, Byun EH, Sung NY. Effect of gamma irradiation on the change of solubility and anti-inflammation activity of chrysin in macrophage cells and LPS-injected endotoxemic mice. Radiat. Phys. Chem. 127: 276-285 (2016a) 

  7. Byun EB, Jang BS, Kim HM, Yang MS, Sung NY, Byun EH. Gamma irradiation enhanced Tollip-mediated anti-inflammatory action through structural modification of quercetin in lipopolysaccharide-stimulated macrophages. Int. Immunopharmacol. 42: 157-167 (2017b) 

  8. Byun EH., Kim JH, Sung NY, Choi Ji, Lim ST, Kim KH, Yook HS, Byun MW, Lee JW. Effects of gamma irradiation on the physical and structural properties of ${\beta}$ -glucan. Radiat. Phys. Chem. 77: 781-786 (2008) 

  9. Byun EB, Park SH, Jang BS, Sung NY, Byun EH. Gamma-irradiated beta-glucan induces immunomodulation and anticancer activity through MAPK and NF-kappaB pathways. J. Sci. Food Agric. 96: 695-702 (2016b) 

  10. Byun EB, Song H Y, Mushtaq S, Kim HM, Kang JA, Yang MS., Sung NY, Jang BS, Byun EH. Gamma-irradiated luteolin inhibits 3-isobutyl-1-methylxanthine-induced melanogenesis through the regulation of CREB/MITF, PI3K/Akt, and ERK pathways in B16BL6 melanoma cells. J. Med. Food 20: 812-819 (2017a) 

  11. Byun EB, Sung NY, Kim JH, Choi JI, Matsui T, Byun MW, Lee JW. Enhancement of anti-tumor activity of gamma-irradiated silk fibroin via immunomodulatory effects. Chem. Biol. Interact. 186: 90-95 (2010) 

  12. Byun EB, Sung NY, Park JN, Yang MS, Park SH, Byun EH. Gamma-irradiated resveratrol negatively regulates LPS-induced MAPK and NF-kappaB signaling through TLR4 in macrophages. Int. Immunopharmacol. 25: 249-259 (2015) 

  13. Byun EB, Sung NY ,Yang MS, Lee BS, Song DS, Park JN, Kim JH., Jang BS, Choi DS, Park SH, Yu YB, Byun EH. Anti-inflam- matory effect of gamma-irradiated genistein through inhibition of NF-kappaB and MAPK signaling pathway in lipopolysaccharide-induced macrophages. Food Chem. Toxicol. 74: 255-264 (2014) 

  14. Caulfield CD, Cassidy JP, Kelly JP. Effects of gamma irradiation and pasteurization on the nutritive composition of commercially available animal diets. J. Am. Assoc. Lab. Anim. Sci. 47: 61-66 (2008) 

  15. Choi JI., Kim HJ, Lee JW. Structural feature and antioxidant activity of low molecular weight laminarin degraded by gamma irradiation. Food Chem. 129: 520-523 (2011) 

  16. Dauphin J, Saint-Lebe L. Radiation chemistry of carbohydrates. pp. 131-186. In: Radiation chemistry of major food components. Elias PS, Cohen AJ (eds). Elsevier/North-Holland Biomedical press, Amsterdam, Netherlands (1997) 

  17. Deitch J. 1982. Economics of food irradiation. Crit. Rev. Food Sci. Nutr. 17: 307-334 (1987) 

  18. Delincee H, Ehlermann D. Recent advances in the identification of irradiated food. International Journal of Radiation Applications and Instrumentation. Radiat. Phys. Chem. 34: 877-890 (1989) 

  19. Easton CJ. Free-radical reactions in the synthesis of ${\alpha}$ -amino acids and derivatives. Chem. Rev. 97: 53-82 (1997) 

  20. Farkas J, Mohacsi-Farkas C. History and future of food irradiation. Trends Food Sci. Technol. 22: 121-126 (2011) 

  21. Francis F. Encyclopedia of Food Sci & Tech. John Wiley & Sons, Inc., New York (2000) 

  22. Gaber MH. Effect of ${\gamma}$ -irradiation on the molecular properties of bovine serum albumin. J. Biosci. Bioeng. 100: 203-206 (2005) 

  23. Giroux M, Lacroix M. Nutritional adequacy of irradiated meat-a review. Food Res. Int. 31: 257-264 (1998) 

  24. Graham WD, Stevenson MH. Effect of irradiation on vitamin C content of strawberries and potatoes in combination with storage and with further cooking in potatoes. J. Sci. Food Agric. 75: 371-377 (1997) 

  25. Hasegawa M, Isogai A, Onabe F. Preparation of low-molecular- weight chitosan using phosphoric acid. Carbohydr. Polym. 20: 279-283 (1993) 

  26. Hatami T, Moura LS, Khamforoush M, Meireles MAA. Supercritical fluid extraction from Priprioca: Extraction yield and mathematical modeling based on phase equilibria between solid and supercritical phases. J. Supercrit. Fluids 85: 62-67 (2014) 

  27. Hawkins CL, Davies MJ. Generation and propagation of radical reactions on proteins. Biochim. Biophys. Acta, Bioenerg. 1504: 196-219 (2001) 

  28. Henriksen T. Radiation-induced radicals in water, deuterium oxide and aqueous solutions of glycine at low temperatures. Nature 193: 371 (1962) 

  29. Hirvonen A, Trapido M, Hentunen J, Tarhanen J. Formation of hydroxylated and dimeric intermediates during oxidation of chlo- rinated phenols in aqueous solution. Chemosphere 41: 1211-1218 (2000) 

  30. Huei CR, Rong CJ, Shyur JS. Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan. Carbohydr. Res. 299: 287-294 (1997) 

  31. Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis 23: 687-696 (2002) 

  32. Jeong S, Park J, Kim J. The development trend of skin beauty food with skin protection effects from natural source. Korean J. Aesthet. Cosmetol. 11: 71-80 (2013) 

  33. Josephson ES, Brynjolfsson A, Wierbicki E. Engineering and economics of food irradiation. Trans. N. Y. Acad. Sci. 30: 600-614 (1968) 

  34. Jumel K, Harding SE, Mitchell JR. Effect of gamma irradiation on the macromolecular integrity of guar gum. Carbohydr. Res. 282: 223-236 (1996) 

  35. Jung HJ, Park HR, Jung U, Jo SK. Radiolysis study of genistein in methanolic solution. Radiat. Phys. Chem. 78: 386-393 (2009) 

  36. Kang H, Chawla S, Jo C, Kwon J, Byun MW. Studies on the devel- opment of functional powder from citrus peel. Bioresour. Technol. 97: 614-620 (2006) 

  37. Kang JA, Song HY, Byun EH, Ahn NG, Kim HM, Nam YR, Lee GH, Jang BS, Choi DS, Lee DE, Byun EB. Gamma-irradiated black ginseng extract inhibits mast cell degranulation and suppresses atopic dermatitis-like skin lesions in mice. Food Chem. Toxicol. 111: 133-143 (2018) 

  38. Katial RK, Grier TJ, Hazelhurst DM, Hershey J, Engler RJ. Deleterious effects of electron beam radiation on allergen extracts. J. Allergy Clin. Immunol. 110: 215-219 (2002) 

  39. Khalil A, Albachir M, Odeh A. Effect of gamma irradiation on some carcinogenic polycyclic aromatic hydrocarbons (PAHs) in wheat grains. polycyclic aromat. Compd. 361: 873-883 (2016) 

  40. Khattak KF, Simpson TJ. Effect of gamma irradiation on the extraction yield, total phenolic content and free radical-scavenging activity of Nigella staiva seed. Food Chem. 110: 967-972 (2008) 

  41. Khattak KF, Simpson TJ. Effect of gamma irradiation on the antimicrobial and free radical scavenging activities of Glycyrrhiza glabra root. Radiat. Phys. Chem. 79: 507-512 (2010) 

  42. Kim JH, Ahn HJ, Jo C, Park HJ, Chung YJ, Byun MW. Radiolysis of biogenic amines in model system by gamma irradiation. Food Control 15: 405-408 (2004) 

  43. Kim TH, Kim JK, Ito H, Jo C. Enhancement of pancreatic lipase inhibitory activity of curcumin by radiolytic transformation. Bioorg. Med. Chem. Lett. 21: 1512-1514 (2011b) 

  44. Kim DM, Kim KH, Sung NY, Jung PM, Kim JS, Kim JK, Kim JH, Choi JI, Song BS, Lee JW. Effects of gamma irradiation on the extraction yield and whitening activity of polysaccharides from Undaria pinnatifida sporophyll. J. Korean Soc. Food Sci. Nutr. 40: 712-716 (2011a) 

  45. Kim MJ, Lee JW, Yook HS, Lee SY, Kim MC, Byun MW. 2002. Changes in the antigenic and immunoglobulin E-binding properties of hen's egg albumin with the combination of heat and gamma irradiation treatment. J. Food Prot. 65: 1192-1195 (2002) 

  46. Kim MJ, Yook HS, Byun MW. Effects of gamma irradiation on microbial contamination and extraction yields of Korean medicinal herbs. Radiat. Phys. Chem. 57, 55-58 (2000) 

  47. Kojthung A, Meesilpa P, Sudatis B, Treeratanapiboon L, Udomsangpetch R, Oonkhanond B. Effects of gamma radiation on biodegradation of Bombyx mori silk fibroin. Int. Biodeterior. Biodegrad. 62: 487-490 (2008) 

  48. Kyzlink V. Principles of food preservation. Elsevier (1990) 

  49. Lakritz L, Thayer D. Effect of gamma radiation on total tocopherols in fresh chicken breast muscle. Meat Sci. 37: 439-448 (1994) 

  50. Lee NY, Jo C, Sohn SH, Kim JK, Byun MW. Effects of gamma irradiation on the biological activity of green tea byproduct extracts and a comparison with green tea leaf extracts. J. Food Sci. 71 (2006) 

  51. Lee SS, Kim TH, Lee EM, Lee MH, Lee HY, Chung BY. Degradation of cyanidin-3-rutinoside and formation of protocatechuic acid methyl ester in methanol solution by gamma irradiation. Food Chem. 156: 312-318 (2014) 

  52. Lee JH, Kim JK, Park JN, Yoon YM, Sung NY, Kim JH, Song BS, Yook HS, Kim BK, Lee JW. Evaluation of instant cup noodle, irradiated for immuno-compromised patients. Radiat. Phys. Chem. 81: 1115-1117 (2012) 

  53. Lee SJ, Song EJ, Lee SY, Kim KBWR, Yoon SY, Lee CJ, Jung JY, Park NB, Kwak JH, Park JG. Effects of gamma irradiation on antioxidant, antimicrobial activities and physical characteristics of Sargassum thunbergii extract. Korean J. Food Sci. Technol. 421: 431-437 (2010) 

  54. Lim S, Choi Ji, Park H, Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis. Radiat. Phys. Chem. 109: 23-26 (2015) 

  55. Marfak A, Trouillas P, Allais D, Calliste C, Cook-Moreau J, Duroux J. Mechanisms of transformation of the antioxidant kaempferol into depsides. Gamma-radiolysis study in methanol and ethanol. Radiat. Res. 160: 355-365 (2003a) 

  56. Marfak A, Trouillas P, Allais DP, Calliste CA, Cook-Moreau J, Duroux JL. Reactivity of flavonoids with 1-hydroxyethyl radical: a ${\gamma}$ -radiolysis study. Biochim. Biophys. Acta, Gen. Subj. 1670: 28-39 (2004) 

  57. Marfak A, Trouillas P, Allais DP, Champavier Y, Calliste CA. Duroux JL. Radiolysis of quercetin in methanol solution: observation of depside formation. J. Agric. Food Chem. 50: 4827-4833 (2002) 

  58. Marfak A, Trouillas P, Allais DP, Champavier Y, Calliste CA, Duroux JL. Radiolysis of kaempferol in water/methanol mixtures. Evaluation of antioxidant activity of kaempferol and products formed. J. Agric. Food Chem. 51: 1270-1277 (2003b) 

  59. Molins RA. Food irradiation: principles and applications. John Wiley & Sons (2001) 

  60. Mohamed KA, Basfar AA, Al-Shahrani AA. Gamma-ray induced degradation of diazinon atrazine in natural groundwaters. J. Hazard. Mater. 166: 810-814 (2009) 

  61. Moreno P, Salvado V. Determination of eight water-and fat-soluble vitamins in multi-vitamin pharmaceutical formulations by high-performance liquid chromatography. J. Chromatogr. A 870: 207-215 (2000) 

  62. Mujika JI, Uranga J, Matxain JM. Computational study on the attack of OH radicals on aromatic amino acids. Chem-Eur. J 19: 6862-6873 (2013) 

  63. Nakai S. Food Irradiation Research and Technology. pp. 947-948. In: CH Sommers, X. Fan (Eds.). Blackwell Publishing (2007) 

  64. Nawar W, Zhu Z, Yoo Y. Radiolytic products of lipids as markers for the detection of irradiated meats, Food irradiation and the chemist. Johnston DE, Stevensen MH (eds). pp. 13-24. In: Royal Society of Chemistry, Cambriddge, UK (1990) 

  65. Nawar WW. Volatiles from food irradiation. Food Rev. Int. 2: 45-78 (1986) 

  66. Park JN, Byun EB, Kim JJ, Jang BS, Park SH. Induction of apopto- sis by gamma-irradiated apigenin in H1975 human non-small lung cells. J. Korean Soc. Food Sci. Nutr. 44: 816-822 (2015) 

  67. Park HJ, Cho YJ. The effect on anti-oxidative activity and increasing extraction yield of Aralia elata Cortex by gamma irradiation. Korean J. Plant Resour. 27: 429-438 (2014) 

  68. Park CH, Chung BY, Lee SS, Bai HW, Cho JY, Jo C, Kim TH. Radiolytic transformation of rotenone with potential anti-adipo- genic activity. Bioorg. Med. Chem. Lett. 23: 1099-1103 (2013) 

  69. Park HR, Lee CH. Radiolytic and antioxidative characteristics of phytic acid by gamma irradiation. J. Korean Soc. Food Sci. Nutr. 331: 1252-1256 (2004) 

  70. Perchonok M, Bourland C. NASA food systems: past, present, and future. Nutrition 18, 913-920 (2002) 

  71. Prasad KN, Yang E, Yi C, Zhao M, Jiang Y. Effects of high pressure extraction on the extraction yield, total phenolic content and anti- oxidant activity of longan fruit pericarp. Innov. Food Sci. Emerging Technol.10: 155-159 (2009) 

  72. Putnik P, Kovaeeviae DB, Peniae M, Fege M, Dragoviae-Uzelac V. Microwave-assisted extraction (MAE) of dalmatian sage leaves for the optimal yield of polyphenols: HPLC-DAD identification and quantification. Food Anal. Methods 9: 2385-2394 (2016) 

  73. Quint R, Park H, Krajnik P, Solar S, Getoff N, Sehested K. ${\gamma}$ -radiolysis and pulse radiolysis of aqueous 4-chloroanisole. Radiat. Phys. Chem. 47: 835-845 (1996) 

  74. Raul F, Goss F, Delinc H, Hartwig A, Marchioni E, Miesch M, Werner D, Burnouf D. Food-borne radiolytic compounds (2-alkylcyclobutanones) may promote experimental colon carcinogenesis. Nutr. Cancer 44: 189-191 (2002) 

  75. Seo JH, Lee JW, Lee YS, Lee SY, Kim MR, Yook HS, Byun MW. Change of an egg allergen in a white layer cake containing gamma-irradiated egg white. J. Food Prot. 67: 1725-1730 (2004) 

  76. Shang NC, Yu YH, Ma HW, Chang CH, Liou ML. Toxicity measurements in aqueous solution during ozonation of mono-chlorophenols. J. Environ. Manage. 78: 216-222 (2006) 

  77. Shin H, Lee D. Study on the Process to Decrease the Molecular Weight of beta- 1, 6-branched beta- 1, 3-D-Glucans. Korean J. Biotechnol. Bioeng. 18: 352-355 (2003) 

  78. Siegbahn K, Axel P. Alpha-, beta-, and gamma-ray spectroscopy. Am. J. Phys. 34: 275-276 (1966) 

  79. Smith NL. The thiobarbituric acid test in irradiation-sterilized beef. Food Technol. 14: 317-320 (1958) 

  80. Sokhey A, Hanna M. Properties of irradiated starches. Food Struct. 12: 2 (1993) 

  81. Sommers CH, Fan X. Food Irradiation Research and Technology. Blackwell Publishing 947-948 (2008) 

  82. Sung NY, Byun EB, Kwon SK, Kim JH, Song BS, Choi Ji, Kim JK, Yoon Y, Byun MW, Kim MR. Effect of gamma irradiation on the structural and physiological properties of silk fibroin. Food Sci. Biotechnol. 18: 228-233 (2009a) 

  83. Sung NY, Byun EH, Kwon SK, Song BS, Choi Ji, Kim JH, Byun MW, Yoo YC, Kim MR, Lee JW. Immune-enhancing activities of low molecular weight ${\beta}$ -glucan depolymerized by gamma irradiation. Radiat. Phys. Chem. 78: 433-436 (2009b) 

  84. Sung NY, Byun EB, Kwon SK, Yoo YC, Jung PM, Kim JH, Choi JI, Kim MR, Lee JW. Preparation and characterization of high-molecular-weight sericin by ${\gamma}$ irradiation. J. Appl. Polym. Sci. 120: 2034-2040 (2011) 

  85. Sung NY, Byun EB, Song DS, Jin YB, Park JN, Kim JK, Park JH, Song BS, Park SH, Lee JW. Anti-inflammatory action of ${\gamma}$ -irradiated genistein in murine peritoneal macrophage. Radiat. Phys. Chem. 105: 17-21 (2014) 

  86. Urbain W. Irradiation of meats and poultry. Food Irradiat. 14-30 (1978) 

  87. Velioglu Y, Mazza G, Gao L, Oomah B. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 46: 4113-4117 (1998) 

  88. Wu D, Shu Q, Wang Z, Xia Y. Effect of gamma irradiation on starch viscosity and physicochemical properties of different rice. Radiat. Phys. Chem. 65: 79-86 (2002) 

  89. World Health Organization. Wholesomeness of irradiated food, Technical report series 659, World Health Organization, Geneva (1981) 

  90. World Health Organization. High-dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy. WHO Technical Report Series 890. Geneva (1999) 

  91. Xie H, Jia Z, Huang J, Zhang C. Preparation of low molecular weight chitosan by complex enzymes hydrolysis. Int. J. Chem. 3: 180 (2011) 

  92. Xing R, Liu S, Yu H, Zhang Q, Li Z, Li P. Preparation of low-molecular-weight and high-sulfate-content chitosans under microwave radiation and their potential antioxidant activity in vitro. Carbohydr. Res. 339: 2515-2519 (2004) 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로