최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기전기전자학회논문지 = Journal of IKEEE, v.22 no.2, 2018년, pp.514 - 517
신영산 (School of Electronic Engineering and Research Institute of Future Automobile, Soongsil University) , 이성수 (School of Electronic Engineering and Research Institute of Future Automobile, Soongsil University)
In sensor systems, ADC (analog-to-digital converter) demands high resolution, low power consumption, and high signal bandwidth. Sigma-delta ADC achieves high resolution by high order structure and high over-sampling ratio, but it suffers from high power consumption and low signal bandwidth. SAR (suc...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
센서 시스템의 아날로그-디지털 변환기에게 요구되는 것은? | 센서 시스템의 아날로그-디지털 변환기(ADC: analog-to-digital converter)에서는 높은 해상도, 낮은 전력 소모, 높은 신호 대역폭이 요구된다. 시그마-델타 ADC는 높은 차수 구조와 높은 오버샘플링 비를 통해 고해상도를 얻을 수 있으나 전력 소모가 높고 신호 대역폭이 낮다. | |
시그마-델타 ADC의 장단점 | 센서 시스템의 아날로그-디지털 변환기(ADC: analog-to-digital converter)에서는 높은 해상도, 낮은 전력 소모, 높은 신호 대역폭이 요구된다. 시그마-델타 ADC는 높은 차수 구조와 높은 오버샘플링 비를 통해 고해상도를 얻을 수 있으나 전력 소모가 높고 신호 대역폭이 낮다. 연속 근사 레지스터(SAR: successive-approximation-register) ADC의 경우 저전력 동작이 가능하나 공정상 부정합으로 인해 해상도에 한계가 있다. | |
R-C Hybrid DAC가 최근에 쓰이지 않는 이유는? | 초기에는 그림 7과 같이 공정상 부정합에 의한 해상도의 한계를 극복하기 위해 정합성이 좋은저항을 사용한 R-C Hybrid DAC를 사용하였다 [17]. 하지만 여전히 12 비트 정도로 성능이 제한 되어 최근에는 전류 조향(current steering) DAC 나 시그마-델타 DAC 등 높은 해상도의 DAC를 사용하여 16 비트 급의 해상도를 얻어낸다[18]. |
W. Kester, "Which ADC Architecture Is Right for Your Application?," Analog Dialogue, 2005.
J. Choi, C. Park, and J. Choi, "A High-resolution Low-noise Capacitance to Digital Converter," Journal of IEIE, vol. 54, no. 12, pp. 81-87, 2017.
Maxim, "Understanding SAR ADCs: Their Architecture and Comparison with Other ADCs," https://www.maximintegrated.com/en/app-notes/index.mvp/id/1080
S. Choi, H. Ku, H. Son, B. Kim, H. Park, and J. Sim., "An 84.6-dB-SNDR and 98.2-dB-SFDR Residue-Integrated SAR ADC for Low-Power Sensor Applications," IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 404-417, 2018. DOI: 10.1109/JSSC.2017.2774287
S. Wu and J. Wu, "A 81-dB Dynamic Range 16-MHz Bandwidth Delta-Sigma Modulator Using Background Calibration," IEEE Journal of Solid-State Circuits, vol. 48, no. 9, pp. 2170-2179, 2013. DOI: 10.1109/JSSC.2013.2264137
F. Mostert, D. Schinkel, W. Groothedde, L. Breems, R. Heeswijk, M. Koerts. E. Iersel. D. Groeneveld, G. Holland. P. Zeelen, D. Hissink, M. Pos, P. Wielage, F. Jorritsma, and M. Middelink, "5.1 A $5{\times}80W$ 0.004% THD+N Automotive Multiphase Class-D Audio Amplifier with Integrated Low-latency ${\Delta}{\Sigma}$ ADCs for Digitized Feedback after the Output Filter," in Proc. of IEEE International Solid-State Circuits Conference, pp. 86-87, 2017. DOI: 10.1109/ISSCC.2017.7870273
C. Chen, Y. Zhang and G. Temes, "History, present state-of-art and future of incremental ADCs," in Proc. of European Solid-State Circuits Conference, pp. 83-86, 2016. DOI: 10.1109/ESSCIRC.2016.7598248
Y. Jung and J. Roh, "The Incremental Delta-Sigma ADC for A Single-Electrode Capacitive Touch Sensor," j.inst.Korean.electr.electron.eng, vol. 17. no. 3, pp. 234-240, 2013. DOI : 10.7471/ikeee.2013.17.3.234
Y. Chae, K. Souri and K. Makinwa, "A $6.3{\mu}W$ 20 bit Incremental Zoom-ADC with 6 ppm INL and $1{\mu}V$ Offset," IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3019-3027, 2013. DOI: 10.1109/JSSC.2013.2278737
B. Gonen, F. Sebastino, R. Quan, R. Veldhoven, and K. Makinwa, "A Dynamic Zoom ADC with 109-dB DR for Audio Applications," IEEE Journal of Solid-State Circuits, vol. 52, no. 6, pp. 1542-1550, 2017. DOI: 10.1109/JSSC.2017.2669022
S. Karmakar, B. Gonen, F. Sebastino, R. Veldhoven, and K. Makinwa, "A $280{\mu}W$ dynamic-zoom ADC with 120dB DR and 118dB SNDR in 1kHz BW," in Proc. of IEEE International Solid-State Circuits Conference, pp. 238-240, 2018.DOI: 10.1109/ISSCC.2018.8310272
Texas Instruments, "Continuous-Time Sigma-Delta ADCs," http://www.ti.com/lit/an/snaa098/snaa098.pdf
A. Hart and S. Voinigescu, "A 1 GHz Bandwidth Low-Pass Delta-Sigma ADC With 20-50 GHz Adjustable Sampling Rate," IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1401-1414, 2009.DOI: 10.1109/JSSC.2009.2015852
C. Weng, T. Wei, E. Alpman, C. Fu, and T. Lin, "A Continuous-Time Delta-Sigma Modulator Using ELD-Compensation-Embedded SAB and DWA-Inherent Time-Domain Quantizer," IEEE Journal of Solid-State Circuits, vol. 51, no. 5, pp. 1235-1245, 2016.DOI: 10.1109/JSSC.2016.2532345
A. Sukumaran and S. Pavan, "Design of Continuous-Time Delta-Sigma Modulators With Dual Switched-Capacitor Return-to-Zero DACs," IEEE Journal of Solid-State Circuits, vol. 51, no. 7, pp. 1619-1629, 2016.DOI: 10.1109/JSSC.2016.2542200
B. Ginsburg and A. Chandrakasan, "500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC," IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 739-747, 2007.DOI: 10.1109/JSSC.2007.892169
M. Kim, Y. Kim, Y. Kwak, and G. Ahn, "A 12-bit 200-kS/s SAR ADC with hybrid RC DAC," in Proc. of IEEE Asia Pacific Conference on Circuits and Systems, pp. 185-188, 2014. DOI: 10.1109/APCCAS.2014.7032752
A. AlMarashli, J. Anders, J. Becker, and M. Ortmanns, "A Nyquist Rate SAR ADC Employing Incremental Sigma Delta DAC Achieving Peak SFDR 107 dB at 80 kS/s," IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1493-1507, 2018. DOI: 10.1109/JSSC.2017.2776299
J. McNeill, K. Chan, M. Coln, C. David, and C. Brenneman, "All-digital background calibration of a successive approximation ADC using the 'Split ADC' architecture," IEEE Trans. Circuits Syst. I, vol. 58, no. 10, pp. 2355-2365 2011. DOI: 10.1109/TCSI.2011.2123590
J. Shen, A. Shikata, L. Fernando, N. Guthrie, B. Chen, M. Maddox, N. Mascarenhas, R. Kapusta, and M. Coln, "A 16-bit 16-MS/s SAR ADC With On-Chip Calibration in 55-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 53, no. 4, pp. 1149-1160, 2018.DOI: 10.1109/JSSC.2017.2784761
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.