$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Identification and Analysis of Putative Polyhydroxyalkanoate Synthase (PhaC) in Pseudomonas fluorescens 원문보기

Journal of microbiology and biotechnology, v.28 no.7, 2018년, pp.1133 - 1140  

Lim, Ju Hyoung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ,  Rhie, Ho-Gun (Department of Biology, Kyung Hee University) ,  Kim, Jeong Nam (Department of Microbiology, College of Natural Sciences, Pusan National University)

Abstract AI-Helper 아이콘AI-Helper

Pseudomonas fluorescens KLR101 was found to be capable of producing polyhydroxyalkanoate (PHA) using various sugars and fatty acids with carbon numbers ranging from 2 to 6. The PHA granules consisted mainly of a poly(3-hydroxybutyrate) homopolymer and/or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 1). Confirmation that P. fluorescens KLR101 possesses an intrinsic PHA biosynthesis pathway was carried out by amplification and sequencing analysis of the 540-bp internal region of the phaC g ene encoding PHA synthase [10] (data not shown). Members of the genus Pseudomonas are well-known medium-chainlength (mcl)–PHA producers [27].
  • Gas chromatographic analysis was performed using an HP-Innowax crosslinked PEG column (60 m × 0.32 mm × 0.25 μm) with the HP 6890 GC system (Agilent, USA).
  • fluorescens KLR101 was constructed using a Lambda DASH kit (Stratagene, USA). Plaque hybridization was performed with the 573-bp PstI fragment of the phbC gene from Ralstonia eutropha [15] by using a Genius kit (Boehringer Mannheim, USA). A 5.

대상 데이터

  • Some phaC2 genes have been reported to have their own –35/–10 promoters [33, 35], which is considered as bicistronicity, offering flexibility in response to environmental changes. In order to determine whether or not ORF2 is a gene for PHA production, a functional expression system using the K. aerogenes KC2671 (pUMS) strain, which is unable to produce PHA, was employed. When in vivo expression of the 5.

이론/모형

  • The enzyme assay was performed based on the off-line Ellman method [22-26] using 0.5 mM DL-β-hydroxybutyryl-CoA (Sigma, USA) as a substrate.
본문요약 정보가 도움이 되었나요?

참고문헌 (40)

  1. Anderson AJ, Dawes EA. 1990. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472. 

  2. Madison LL, Huisman GW. 1999. Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53. 

  3. Peoples OP, Sinskey AJ. 1989. Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J. Biol. Chem. 264: 15298-15303. 

  4. Schubert P, Steinbuchel A, Schlegel HG. 1988. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-betahydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 170: 5837-5847. 

  5. Slater SC, Voige WH, Dennis DE. 1988. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J. Bacteriol. 170: 4431-4436. 

  6. Kadouri D, Jurkevitch E , Okon Y, Castro-Sowinski S. 2005. Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit. Rev. Microbiol. 31: 55-67. 

  7. Rehm BH, Steinbuchel A. 1999. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromol. 25: 3-19. 

  8. Lee HJ, Choi MH, Kim TU, Yoon SC. 2001. Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in Pseudomonas fluorescens BM07 utilizing saccharides and its inhibition by 2-bromooctanoic acid. Appl. Environ. Microbiol. 67: 4963-4974. 

  9. Sheu DS, Wang YT, Lee CY. 2000. Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology 146: 2019-2025. 

  10. Solaiman DK, Ashby RD, Foglia TA. 2000. Rapid and specific identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl. Microbiol. Biotechnol. 53: 690-694. 

  11. Timm A, Steinbuchel A. 1990. Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl. Environ. Microbiol. 56: 3360-3367. 

  12. Tobin KM, O'Connor KE. 2005. Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons. FEMS Microbiol. Lett. 253: 111-118. 

  13. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. 

  14. Kumar S, Tamura K, Nei M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150-163. 

  15. Hall B, Baldwin J , Rhie HG, Dennis D. 1998. Cloning o f the Nocardia corallina polyhydroxyalkanoate synthase gene and production of poly-(3-hydroxybutyrate-co-3-hydroxyhexanoate) and poly-(3-hydroxyvalerate-co-3-hydroxyheptanoate). Can. J. Microbiol. 44: 687-691. 

  16. Kalousek S, Lubitz W. 1995. High-level poly(beta-hydroxybutyrate) production in recombinant Escherichia coli in sugarfree, complex medium. Can. J. Microbiol. 41(Suppl 1): 216-221. 

  17. Zorn H, Breithaupt DE, Takenberg M, Schwack W, Berger RG. 2003. Enzymatic hydrolysis of carotenoid esters of marigold flowers (Tagetes erecta L.) and red paprika (Capsicum annuum L.) by commercial lipases and Pleurotus sapidus extracellular lipase. Enzyme Microb. Technol. 32: 623-628. 

  18. Qi Q, Steinbuchel A, Rehm BH. 1998. Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid beta-oxidation by acrylic acid. FEMS Microbiol. Lett. 167: 89-94. 

  19. DiRusso CC, Nunn WD. 1985. Cloning and characterization of a gene (fadR) involved in regulation of fatty acid metabolism in Escherichia coli. J. Bacteriol. 161: 583-588. 

  20. Ostle AG, Holt JG. 1982. Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl. Environ. Microbiol. 44: 238-241. 

  21. Brandl H, Gross RA, Lenz RW, Fuller RC. 1988. Pseudomonas oleovorans as a source of poly(beta-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl. Environ. Microbiol. 54: 1977-1982. 

  22. Qi Q, Steinbuchel A, Rehm BHA. 2000. In vitro synthesis of poly(3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 54: 37-43. 

  23. Ellman GL. 1959. Tissue sulfhydryl groups. Arch. Biochem Biophys. 82: 70-77. 

  24. Gerngross TU, Martin DP. 1995. Enzyme-catalyzed synthesis of poly[(R)-(-)-3-hydroxybutyrate]: formation of macroscopic granules in vitro. Proc. Natl. Acad. Sci. USA 92: 6279-6283. 

  25. Gerngross TU, Snell KD, Peoples OP, Sinskey AJ, Csuhai E, Masamune S, et al. 1994. Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry 33: 9311-9320. 

  26. Kraak MN, Kessler B, Witholt B. 1997. In vitro activities of granule-bound poly[(R)-3-hydroxyalkanoate]polymerase C1 of Pseudomonas oleovorans - development of an activity test for medium-chain-length-poly(3-hydroxyalkanoate) polymerases. Eur. J. Biochem. 250: 432-439. 

  27. Huisman GW, Deleeuw O, Eggink G, Witholt B. 1989. Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl. Environ. Microbiol. 55: 1949-1954. 

  28. Shine J, Dalgarno L. 1975. Determinant of cistron specificity in bacterial ribosomes. Nature 254: 34-38. 

  29. Dixon R. 1986. The xylABC promoter from the Pseudomonas putida Tol plasmid is activated by nitrogen regulatory genes in Escherichia coli. Mol. Gen. Genet. 203: 129-136. 

  30. Huisman GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B. 1991. Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J. Biol. Chem. 266: 2191-2198. 

  31. Song J, Jensen RA. 1996. PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa. Mol. Microbiol. 22: 497-507. 

  32. Ciesielski S, Cydzik-Kwiatkowska A, Pokoj T, Klimiuk E. 2006. Molecular detection and diversity of medium-chainlength polyhydroxyalkanoates-producing bacteria enriched from activated sludge. J. Appl. Microbiol. 101: 190-199. 

  33. Matsusaki H, Manji S, Taguchi K, Kato M, Fukui T, Doi Y. 1998. Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J. Bacteriol. 180: 6459-6467. 

  34. Nishikawa T, Ogawa K, Kohda R, Wang ZX, Miyasaka H, Umeda F, et al. 2002. Cloning and molecular analysis of poly(3-hydroxyalkanoate) biosynthesis genes in Pseudomonas aureofaciens. Curr. Microbiol. 44: 132-135. 

  35. Timm A, Steinbuchel A. 1992. Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur. J. Biochem. 209: 15-30. 

  36. Saitou N, Nei M. 1987. The neighbor-joining method - a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. 

  37. Rhie HG, Dennis D. 1995. Role of fadR and atoC (Con) mutations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in recombinant pha(+) Escherichia coli. Appl. Environ Microbiol. 61: 2487-2492. 

  38. Brosius J. 1988. Expression vectors employing lambda-, trp-, lac-, and lpp-derived promoters. Biotechnology 10: 205-225. 

  39. Tabor S, Richardson CC. 1985. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82: 1074-1078. 

  40. Fitch WM. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20: 406-416. 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로