$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A continuous-flow and on-site mesocosm for ocean acidification experiments on benthic organisms 원문보기

Algae, v.33 no.4, 2018년, pp.359 - 366  

Kim, Ju-Hyoung (Faculty of Marine Applied Biosciences, Kunsan National University) ,  Kang, Eun Ju (Research Institute for Basic Science, Chonnam National University) ,  Kim, Keunyong (Research Institute for Basic Science, Chonnam National University) ,  Kim, Kwang Young (Department of Oceanography, College of Natural Sciences, Chonnam National University)

Abstract AI-Helper 아이콘AI-Helper

Mesocosm experiments conducted for ecological purposes have become increasingly popular because they can provide a holistic understanding of the biological complexities associated with natural systems. This paper describes a new outdoor mesocosm designed for $CO_2$ perturbation experiment...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Seawater pH was determined with spectrophotometric measurements using a high-resolution spectrophotometer (Agilent 8453 UV-Visible Spectrophotometer; Agilent Technologies, Pal Alto, CA, USA). Using a siphon tube, the samples were filled into a 10 cm path length cuvette without air bubbles, and then, absorbance was measured with or without adding an indicator dye at wavelengths of 434, 578, and 730 nm and a constant temperature of 25°C.

대상 데이터

  • The mesocosm was installed near the rocky shore of Namhae-gun, South Sea of Korea (34°48′30″ N, 127°49′37″ E), and consisted of cylindrical acrylic tanks (1.2 m in diameter and 1.2 m in height) that were transparent and lidless (Figs 1 & 2).
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. Alexandre, A., Silva, J., Buapet, P., Bjork, M. & Santos, R. 2012. Effects of $CO_2$ enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii. Ecol. Evol. 2:2625-2635. 

  2. Andersson, A. J., Kuffner, I. B., Mackenzie, F. T., Jokiel, P. L., Rodgers, K. S. & Tan, A. 2009. Net loss of $CaCO_3$ from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences 6:1811-1823. 

  3. Barry, J. P., Hall-Spencer, J. M. & Tyrrell, T. 2010. In situ perturbation experiments: natural venting sites, spatial/temporal gradients in ocean pH, manipulative in situ p( $CO_2$ ) perturbations. In Riebesell, U., Fabry, V. J. & Gattuso, J. -P. (Eds.) Guide for Best Practices in Ocean Acidification Research and Data Reporting. Publications Office of the European Union, Luxembourg, pp. 123-136. 

  4. Burrell, R. B., Keppel, A. G., Clark, V. M. & Breitburg, D. L. 2015. An automated monitoring and control system for flow-through co-cycling hypoxia and pH experiments. Limnol. Oceanogr. Methods 14:168-185. 

  5. Campbell, J. E. & Fourqurean, J. W. 2011. Novel methodology for in situ carbon dioxide enrichment of benthic ecosystems. Limnol. Oceanogr. Methods 9:97-109. 

  6. Dickson, A. G. 1993. The measurement of sea water pH. Mar. Chem. 44:131-142. 

  7. Dickson, A. G., Sabine, C. L. & Christian, J. R. 2007. Guide to best practices for ocean $CO_2$ measurements. PICES Special Publication 3. North Pacific Marine Science Organization, Sydney, 191 pp. 

  8. Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. 2009. Ocean acidification: the other $CO_2$ problem. Annu. Rev. Mar. Sci. 1:169-192. 

  9. Duarte, G., Calderon, E. N., Pereira, C. M., Marangoni, L. F. B., Santos, H. F., Peixoto, R. S., Bianchini, A. & Castro, C. B. 2015. A novel marine mesocosm facility to study global warming, water quality and ocean acidification. Ecol. Evol. 5:4555-4566. 

  10. Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. 2012. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9:3917-3930. 

  11. Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., Rowley, S. J., Tedesco, D. & Buia, M. -C. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96-99. 

  12. Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., Crook, E. D., Kroeker, K. J., Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C. & Martz, T. R. 2011. High-frequency dynamics of ocean pH: a multi ecosystem comparison. PLoS ONE 6:e28983. 

  13. Jeong, H. J., Lee, K., Yoo, Y. D., Kim, J. -M., Kim, T. H., Kim, M., Kim, J. -H. & Kim, K. Y. 2016. Reduction in $CO_2$ uptake rates of red tide dinoflagellates due to mixotrophy. Algae 31:351-362. 

  14. Jiang, Z. J., Huang, X. -P. & Zhang, J. -P. 2010. Effects of $CO_2$ enrichment of photosynthesis, growth, and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) Aschers. J. Integr. Plant Biol. 52:904-913. 

  15. Jiang, Z. -P., Huang, J. -C., Dai, M., Kao, S. J., Hydes, D. J., Chou, W. -C. & Jan, S. 2011. Short-term dynamics of oxygen and carbon in productive nearshore shallow seawater systems off Taiwan: observation and modeling. Limnol. Oceanogr. 56:1832-1849. 

  16. Jokiel, P. L., Bahr, K. D. & Rodgers, K. S. 2014. Low-cost, highflow mesocosm system for simulating ocean acidification with $CO_2$ gas. Limnol. Oceanogr. Methods 12:313-322. 

  17. Jokiel, P. L., Rodgers, K. S., Kuffner, I. B., Andersson, A. J., Cox, E. F. & Mackenzie, F. T. 2008. Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473-483. 

  18. Kang, E. J. & Kim, K. Y. 2016. Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta). Algae 31:49-59. 

  19. Kim, J. -H., Kang, E. J., Edwards, M. S., Lee, K., Jeong, H. J. & Kim, K. Y. 2016. Species-specific responses of temperate macroalgae with different photosynthetic strategies to ocean acidification: a mesocosm study. Algae 31:243-256. 

  20. Kim, J. -H., Kang, E. J., Kim, K., Jeong, H. J., Lee, K., Edwards, M. S., Park, M. G., Lee, B. -G. & Kim, K. Y. 2015. Evaluation of carbon flux in vegetative bay based on ecosystem production and $CO_2$ exchange driven by coastal autotrophs. Algae 30:121-137. 

  21. Kim, J. -M., Lee, K., Yang, E. J., Shin, K., Noh, J. H., Park, K. -T., Hyun, B., Jeong, H. -J., Kim, J. -H., Kim, K. Y., Kim, M., Kim, H. -C., Jang, P. -G. & Jang, M. -C. 2010. Enhanced production of oceanic dimethylsulfide resulting from $CO_2$ -induced grazing activity in a high $CO_2$ world. Environ. Sci. Technol. 44:8140-8143. 

  22. Kim, J. -M., Shin, K., Lee, K. & Park, B. -K. 2008. In situ ecosystem- based carbon dioxide perturbation experiments: design and performance evaluation of a mesocosm facility. Limnol. Oceanogr. Methods 6:208-217. 

  23. Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. 2011. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl. Acad. Sci. USA. 108:14515-14520. 

  24. Lewis, E. & Wallace, D. 1998. Program developed for $CO_2$ system calculation. ORNL/CDICA-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, 21 pp. 

  25. Millero, F. J., Zhang, J. -Z., Lee, K. & Campbell, D. M. 1993. Titration alkalinity of seawater. Mar. Chem. 44:153-165. 

  26. Pansch, A., Winde, V., Asmus, R. & Asmus, H. 2016. Tidal benthic mesocosms simulating future climate change scenarios in the field of marine ecology. Limnol. Oceanogr. Methods 14:257-267. 

  27. Petersen, J. E., Kennedy, V. S., Dennison, W. C. & Kemp, W. M. 2009. Enclosed experimental ecosystem and scale: tools for understanding and managing coastal ecosystems. Springer-Verlag, New York, 222 pp. 

  28. Ravaglioli, C., Lauritano, C., Buia, M. C., Balestri, E., Capocchi, A., Fontanini, D., Pardi, G., Tamburello, L., Procaccini, G. & Bulleri, F. 2017. Nutrient loading fosters seagrass productivity under ocean acidification. Sci. Rep. 7:13732. 

  29. Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C. & Watson, A. 2005. Ocean acidification due to increasing atmospheric carbon dioxide. Policy Document 12/05. The Royal Society, London, 60 pp. 

  30. Rerolle, V. M. C., Floquet, C. F. A., Mowlem, M. C., Connelly, D. P., Achterberg, E. P. & Bellerby, R. R. G. J. 2012. Seawater-pH measurements for ocean-acidification observations. Trends Anal. Chem. 40:146-157. 

  31. Riebesell, U., Bellerby, R. G. J., Grossart, H. -P. & Thingstad, F. 2008. Mesocosm $CO_2$ perturbation studies: from organism to community level. Biogeosciences 5:1157-1164. 

  32. Riebesell, U., Czerny, J., von Brockel, K., Boxhammer, T., Budenbender, J., Deckelnick, M., Fischer, M., Hoffmann, D., Krug, S. A., Lentz, U., Ludwig, A., Muche, R. & Schulz, K. G. 2013. A mobile sea-going mesocosm system: new opportunities for ocean change research. Biogeosciences 10:1835-1847. 

  33. Riebesell, U., Lee, K. & Nejstgaard. 2010. Pelagic mesocosms. In Riebesell, U., Fabry, V. J., Hansson, L. & Gattuso, J. -P. (Eds.) Guide for Best Practices in Ocean Acidification Research and Data Reporting. Publications Office of the European Union, Luxembourg, pp. 95-112. 

  34. Saderne, V., Fietzek, P. & Herman, P. M. J. 2013. Extreme variations of $pCO_2$ and pH in a macrophyte meadow of the Baltic Sea in summer: evidence of the effect of photosynthesis and local upwelling. PLoS ONE 8:e62689. 

  35. Stewart, R. I. A., Dossena, M., Bohan, D. A., Jeppesen, E., Kordas, R. L., Ledger, M. E., Meerhoff, M., Moss, B., Mulder, C., Shurin, J. B., Suttle, B., Thompson, R., Trimmer, M. & Woodward, G. 2013. Mesocosm experiments as a tool for ecological climate-change research. Adv. Ecol. Res. 48:71-181. 

  36. Sunday, J. M., Fabricius, K. E., Kroeker, K. J., Anderson, K. M., Brown, N. E., Barry, J. P., Connell, S. D., Dupont, S., Gaylord, B., Hall-Spencer, J. M., Klinger, T., Milazzo, M., Munday, P. L., Russell, B. D., Sanford, E., Thiyagarajan, V., Vaughan, M. L. H., Wilddicombe, S. & Harley, C. D. G. 2017. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change 7:81-85. 

  37. Wahl, M., Buchholz, B., Winde, V., Golomb, D., Guy-Haim, T., Muller, J., Rilov, G., Scotti, M. & Bottcher, M. E. 2015. A mesocosm concept for the simulation of near-natural shallow underwater climates: The Kiel Outdoor Benthocosms (KOB). Limnol. Oceanogr. Methods 13:651-663. 

  38. Widdicombe, S., Dupont, S. & Thorndyke, M. 2010. Laboratory experiments and benthic mesocosm studies. In Riebesell, U., Fabry, V. J., Hansson, L. & Gattuso, J. -P. (Eds.) Guide for Best Practices in Ocean Acidification Research and Data Reporting. Publications Office of the European Union, Luxembourg, pp. 113-122. 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로