$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

점액세균의 이차대사산물
Secondary metabolites of myxobacteria 원문보기

Korean journal of microbiology = 미생물학회지, v.54 no.3, 2018년, pp.175 - 187  

현혜숙 (호서대학교 생명공학과) ,  조경연 (호서대학교 생명공학과)

초록
AI-Helper 아이콘AI-Helper

점액세균은 포식활동, 자기방어, 세포 간 신호전달 및 아직까지 알려지지 않은 다른 기능을 위해 다양한 이차대사산물을 생산한다. 점액세균에서 분리된 많은 이차대사산물들은 독특한 작용기작을 가지며 항암, 항세균, 항진균 등과 같은 약학적으로 유용한 생리활성을 보인다. 따라서 전 세계적으로 많은 점액세균 균주들이 분리되었고 이들로부터 다양한 생리활성물질들이 탐색되었다. 하지만 16S rRNA 데이터베이스 분석에 의하면 야생에는 지금까지 분리된 종류 이외에도 다양한 점액세균 종류들이 존재할 것으로 추정되며, 유전체 서열 분석에 의하면 각 점액세균들은 기존에 알려진 물질보다 더 많은 물질을 생산할 수 있는 능력이 있는 것으로 나타났다. 본 총설에서는 점액세균 유래 이차대사산물들과 이들의 유전자, 점액세균에서의 기능, 생합성 유전자의 발현을 조절하는 전사조절인자 등에 대한 최근까지의 연구 현황을 살펴보았다.

Abstract AI-Helper 아이콘AI-Helper

Myxobacteria produce diverse secondary metabolites for predation, self-defense, intercellular signaling, and other unknown functions. Many secondary metabolites isolated from myxobacteria show pharmaceutically useful bioactivity such as anticancer, antibacterial, and antifungal activities with a uni...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 점액세균에서 분리된 이차 대사산물 중에는 작용기작이 특이하며 유용한 생리활성을 보이는 경우가 많다. 본 논문에서는 점액세균의 일반적 특성과 함께 점액세균 유래 이차대사산물들과 이들의 생합성 유전자, 점액세균에서의 기능, 생합성 유전자의 발현 조절 등에 대한 최근까지의 연구현황을 살펴보고자 하였다.
  • 하지만 16S rRNA 데이터베이스 분석에 의하면 야생에는 지금까지 분리된 종류 이외에도 다양한 점액세균 종류들이 존재할 것으로 추정되며, 유전체 서열 분석에 의하면 각 점액세균들은 기존에 알려진 물질보다 더 많은 물질을 생산할 수 있는 능력이 있는 것으로 나타났다. 본 총설에서는 점액세균 유래 이차대사산물들과 이들의 유전자, 점액세균에서의 기능, 생합성 유전자의 발현을 조절하는 전사조절인자 등에 대한 최근까지의 연구 현황을 살펴보았다
본문요약 정보가 도움이 되었나요?

참고문헌 (90)

  1. Ahn JW. 2009. Spirodienal, a new spiroketal from Sorangium cellulosum. Bull. Korean Chem. Soc. 30, 742-744. 

  2. Ahn JW, Jang KH, Chung SC, Oh KB, and Shin J. 2008. Sorangiadenosine, a new sesquiterpene adenoside from the myxobacterium Sorangium cellulosum. Org. Lett. 10, 1167-1169. 

  3. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, et al. 2013. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108-160. 

  4. Baumann S, Herrmann J, Raju R, Steinmetz H, Mohr KI, Huttel S, Harmrolfs K, Stadler M, and Muller R. 2014. Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. Angew. Chem. Int. Ed. 53, 14605-14609. 

  5. Belogurov GA, Vassylyeva MN, Sevostyanova A, Appleman JR, Xiang AX, Lira R, Webber SE, Klyuyev S, Nudler E, Artsimovitch I, et al. 2009. Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457, 332335. 

  6. Berdy J. 2005. Bioactive microbial metabolites. J. Antibiot. 58, 1-26. 

  7. Berdy J. 2012. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. 65, 385-395. 

  8. Berleman JE, Allen S, Danielewicz MA, Remis JP, Gorur A, Cunha J, Hadi MZ, Zusman DR, Northen TR, Witkowska HE, et al. 2014. The lethal cargo of Myxococcus xanthus outer membrane vesicles. Front. Microbiol. 5, 474. 

  9. Bode HB, Irschik H, Wenzel SC, Reichenbach H, Muller R, and Hofle G. 2003. The leupyrrins: a structurally unique family of secondary metabolites from the myxobacterium Sorangium cellulosum. J. Nat. Prod. 66, 1203-1206. 

  10. Brodmann T, Janssen D, Sasse F, Irschik H, Jansen R, Muller R, and Kalesse M. 2010. Isolation and synthesis of chivotriene, a chivosazole shunt product from Sorangium cellulosum. Eur. J. Org. Chem. 2010, 5155-5159. 

  11. Browning DF, Whitworth DE, and Hodgson DA. 2003. Light-induced carotenogenesis in Myxococcus xanthus: functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Mol. Microbiol. 48, 237-251. 

  12. Burchard RP and Dworkin M. 1966. Light-induced lysis and carotenogenesis in Myxococcus xanthus. J. Bacteriol. 91, 535-545. 

  13. Castro CN, Freitag J, Berod L, Lochner M, and Sparwasser T. 2015. Microbe-associated immunomodulatory metabolites: Influence on T cell fate and function. Mol. Immunol. 68, 575-584. 

  14. Dickschat JS, Bode HB, Wenzel SC, Muller R, and Schulz S. 2005a. Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. Chembiochem 6, 2023-2033. 

  15. Dickschat JS, Reichenbach H, Wagner-Dobler I, and Schulz S. 2005b. Novel pyrazines from the myxobacterium Chondromyces crocatus and marine bacteria. Eur. J. Org. Chem. 2005, 4141-4153. 

  16. Dickschat JS, Wenzel SC, Bode HB, Muller R, and Schulz S. 2004. Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus. Chembiochem 5, 778-787. 

  17. Diestel R, Irschik H, Jansen R, Khalil MW, Reichenbach H, and Sasse F. 2009. Chivosazoles A and F, cytostatic macrolides from myxobacteria, interfere with actin. Chembiochem 10, 2900-2903. 

  18. Elnakady YA, Sasse F, Lunsdorf H, and Reichenbach H. 2004. Disorazol A1, a highly effective antimitotic agent acting on tubulin polymerization and inducing apoptosis in mammalian cells. Biochem. Pharmacol. 67, 927-935. 

  19. Euzeby JP. 1997. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int. J. Syst. Bacteriol. 47, 590-592. 

  20. Fleta-Soriano E, Smutna K, Martinez JP, Lorca-Oro C, Sadiq SK, Mirambeau G, Lopez-Iglesias C, Bosch M, Pol A, Bronstrup M, et al. 2017. The Myxobacterial metabolite soraphen A inhibits HIV-1 by reducing virus production and altering virion composition. Antimicrob. Agents Chemother. 61, e00739-17. 

  21. Fujimoto H, Kinoshita T, Suzuki H, and Umezawa H. 1970. Studies on the mode of action of althiomycin. J. Antibiot. 23, 271-275. 

  22. Gerth K, Bedorf N, Hofle G, Irschik H, and Reichenbach H. 1996. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physicochemical and biological properties. J. Antibiot. 49, 560-563. 

  23. Gerth K, Pradella S, Perlova O, Beyer S, and Muller R. 2003. Myxobacteria: proficient producers of novel natural products with various biological activities-past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 106, 233-253. 

  24. Gronewold TM, Sasse F, Lunsdorf H, and Reichenbach H. 1999. Effects of rhizopodin and latrunculin B on the morphology and on the actin cytoskeleton of mammalian cells. Cell Tissue Res. 295, 121-129. 

  25. Herrmann J, Fayad AA, and Muller R. 2017. Natural products from myxobacteria: novel metabolites and bioactivities. Nat. Prod. Rep. 34, 135-160. 

  26. Hirsch H. 1977. Bacteriocins form Myxococcus fulvus (Myxobacterales). Arch. Microbiol. 115, 45-49. 

  27. Hyun H, Lee S, Lee JS, and Cho K. 2018. Genetic and functional analysis of the DKxanthene biosynthetic gene cluster from Myxococcus stipitatus DSM 14675. J. Microbiol. Biotechnol. 28, 1068-1077. 

  28. Irschik H and Reichenbach H. 1985. The mechanism of action of myxovalargin A, a peptide antibiotic from Myxococcus fulvus. J. Antibiot. 38, 1237-1245. 

  29. Irschik H, Reichenbach H, Hofle G, and Jansen R. 2007. The thuggacins, novel antibacterial macrolides from Sorangium cellulosum acting against selected Gram-positive bacteria. J. Antibiot. 60, 733-738. 

  30. Kahnt J, Aguiluz K, Koch J, Treuner-Lange A, Konovalova A, Huntley S, Hoppert M, Sogaard-Andersen L, and Hedderich R. 2010. Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles. J. Proteome Res. 9, 5197-5208. 

  31. Keane R and Berleman J. 2016. The predatory life cycle of Myxococcus xanthus. Microbiology 162, 1-11. 

  32. Kim YJ, Kim HJ, Kim GW, Cho K, Takahashi S, Koshino H, and Kim WG. 2016. Isolation of coralmycins A and B, potent anti-Gram negative compounds from the myxobacteria Corallococcus coralloides M23. J. Nat. Prod. 79, 2223-2228. 

  33. Kim JS, Lee YC, Nam HT, Li G, Yun EJ, Song KS, Seo KS, Park JH, Ahn JW, Zee O, et al. 2007. Apicularen A induces cell death through Fas ligand up-regulation and microtubule disruption by tubulin down-regulation in HM7 human colon cancer cells. Clin. Cancer Res. 13, 6509-6517. 

  34. Kjaerulff L, Raju R, Panter F, Scheid U, Garcia R, Herrmann J, and Muller R. 2017. Pyxipyrrolones: structure eucidation and biosynthesis of cytotoxic myxobacterial metabolites. Angew. Chem. Int. Ed. 56, 9614-9618. 

  35. Kroos L. 2017. Highly signal-responsive gene regulatory network governing Myxococcus development. Trends Genet. 33, 3-15. 

  36. Krug D, Zurek G, Revermann O, Vos M, Velicer GJ, and Muller R. 2008. Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl. Environ. Microbiol. 74, 3058-3068. 

  37. Kunze B, Reck M, Dotsch A, Lemme A, Schummer D, Irschik H, Steinmetz H, and Wagner-Dobler I. 2010. Damage of Streptococcus mutans biofilms by carolacton, a secondary metabolite from the myxobacterium Sorangium cellulosum. BMC Microbiol. 10, 199. 

  38. Kunze B, Trowitzsch-Kienast W, Hofle G, and Reichenbach H. 1992. Nannochelins A, B and C, new iron-chelating compounds from Nannocystis exedens (myxobacteria). Production, isolation, physico-chemical and biological properties. J. Antibiot. 45, 147-150. 

  39. Li X, Zee OP, Shin HJ, Seo Y, and Ahn AW. 2007. Soraphinol A, a new indole alkaloid from Sorangium cellulosum. Bull. Korean Chem. Soc. 28, 835-836. 

  40. Manor A, Eli I, Varon M, Judes H, and Rosenberg E. 1989. Effect of adhesive antibiotic TA on plaque and gingivitis in man. J. Clin. Periodontol. 16, 621-624. 

  41. Mauriello EM, Mignot T, Yang Z, and Zusman DR. 2010. Gliding motility revisited: how do the myxobacteria move without flagella? Microbiol. Mol. Biol. Rev. 74, 229-249. 

  42. McCurdy HD and MacRae TH. 1974. Xanthacin. A bacteriocin of Myxococcus xanthus fb. Can. J. Microbiol. 20, 131-135. 

  43. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, and Breitling R. 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters. Nucleic Acids Res. 39, W339-W346. 

  44. Meiser P, Bode HB, and Muller R. 2006. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc. Natl. Acad. Sci. USA 103, 19128-19133. 

  45. Mulwa LS, Jansen R, Praditya DF, Mohr KI, Wink J, Steinmann E, and Stadler M. 2018. Six heterocyclic metabolites from the myxobacterium Labilithrix luteola. Molecules 23, 542. 

  46. Munoz J, Arias JM, and Montoya E. 1984. Production and properties of a bacteriocin from Myxococcus coralloides D. J. Appl. Bacteriol. 57, 69-74. 

  47. Murray BC, Peterson MT, and Fecik RA. 2015. Chemistry and biology of tubulysins: antimitotic tetrapeptides with activity against drug resistant cancers. Nat. Prod. Rep. 32, 654-662. 

  48. Nadmid S, Plaza A, Lauro G, Garcia R, Bifulco G, and Muller R. 2014. Hyalachelins A-C, unusual siderophores isolated from the terrestrial myxobacterium Hyalangium minutum. Org. Lett. 16, 4130-4133. 

  49. Nyfeler B, Hoepfner D, Palestrant D, Kirby CA, Whitehead L, Yu R, Deng G, Caughlan RE, Woods AL, Jones AK, et al. 2012. Identification of elongation factor G as the conserved cellular target of argyrin B. PLoS One 7, e42657. 

  50. Panter F, Krug D, Baumann S, and Muller R. 2018. Self-resistance guided genome mining uncovers new topoisomerase inhibitors from myxobacteria. Chem. Sci. 9, 4898-4908. 

  51. Perez J, Moraleda-Munoz A, Marcos-Torres FJ, and Munoz-Dorado J. 2016. Bacterial predation: 75 years and counting! Environ. Microbiol. 18, 766-779. 

  52. Plaga W, Stamm I, and Schairer HU. 1998. Intercellular signaling in Stigmatella aurantiaca: purification and characterization of stigmolone, a myxobacterial pheromone. Proc. Natl. Acad. Sci. USA 95, 11263-11267. 

  53. Rachid S, Gerth K, Kochems I, and Muller R. 2007. Deciphering regulatory mechanisms for secondary metabolite production in the myxobacterium Sorangium cellulosum So ce56. Mol. Microbiol. 63, 1783-1796. 

  54. Rachid S, Gerth K, and Muller R. 2009. NtcA-a negative regulator of secondary metabolite biosynthesis in Sorangium cellulosum. J. Biotechnol. 140, 135-142. 

  55. Rachid S, Sasse F, Beyer S, and Muller R. 2006. Identification of StiR, the first regulator of secondary metabolite formation in the myxobacterium Cystobacter fuscus Cb f17.1. J. Biotechnol. 121, 429-441. 

  56. Reichenbach H. 2005. Myxococcales, pp. 1059-1144. In Brenner DJ, Krieg NR, Staley JT, and Garrity GM. (eds.), Bergey's manual of systematic bacteriology, 2nd ed. Bergey's Manual Trust, East Lansing, MI., USA. 

  57. Reichenbach H, Lang E, Schumann P, and Spror C. 2006. Byssovorax cruenta gen. nov., sp. nov., nom. rev., a cellulose-degrading myxobacterium: rediscovery of 'Myxococcus cruentus' Thaxter 1897. Int. J. Syst. Evol. Microbiol. 56, 2357-2363. 

  58. Ringel SM, Greenough RC, Roemer S, Connor D, Gutt AL, Blair B, Kanter G, and von Strandtmann M. 1977. Ambruticin (W7783), a new antifungal antibiotic. J. Antibiot. 30, 371-375. 

  59. Sanford RA, Cole JR, and Tiedje JM. 2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68, 893-900. 

  60. Sasse F, Kunze B, Gronewold TM, and Reichenbach H. 1998. The chondramides: cytostatic agents from myxobacteria acting on the actin cytoskeleton. J. Natl. Cancer Inst. 90, 1559-1563. 

  61. Schaberle TF, Lohr F, Schmitz A, and Konig GM. 2014. Antibiotics from myxobacteria. Nat. Prod. Rep. 31, 953-972. 

  62. Schifrin A, Khatri Y, Kirsch P, Thiel V, Schulz S, and Bernhardt R. 2016. A single terpene synthase is responsible for a wide variety of sesquiterpenes in Sorangium cellulosum Soce56. Org. Biomol. Chem. 14, 3385-3393. 

  63. Schifrin A, Ly TT, Gunnewich N, Zapp J, Thiel V, Schulz S, Hannemann F, Khatri Y, and Bernhardt R. 2015. Characterization of the gene cluster CYP264B1-geoA from Sorangium cellulosum So ce56: biosynthesis of (+)-eremophilene and its hydroxylation. Chembiochem 16, 337-344. 

  64. Schulz S, Fuhlendorff J, and Reichenbach H. 2004. Identification and synthesis of volatiles released by the myxobacterium Chondromyces crocatus. Tetrahedron 60, 3863-3872. 

  65. Shimkets LJ. 1990. Social and developmental biology of the myxobacteria. Microbiol. Rev. 54, 473-501. 

  66. Shimkets LJ, Dworkin M, and Reichenbach H. 2006. The myxobacteria, pp. 31-115. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, and Stackebrandt E. (eds.), The Prokaryotes, 3rd ed., vol. 7, Springer, New York, NY, USA. 

  67. Shin H, Youn J, An D, and Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Korean J. Microbiol. Biotechnol. 41, 44-51. 

  68. Silakowski B, Kunze B, Nordsiek G, Blocker H, Hofle G, and Muller R. 2000. The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg a15. Eur. J. Biochem. 267, 6476-6485. 

  69. Stein A. 2010. Ixabepilone. Clin. J. Oncol. Nurs. 14, 65-71. 

  70. Steinmetz H, Glaser N, Herdtweck E, Sasse F, Reichenbach H, and Hofle G. 2004. Isolation, crystal and solution structure determination, and biosynthesis of tubulysins - powerful inhibitors of tubulin polymerization from myxobacteria. Angew. Chem. Int. Ed. 43, 4888-4892. 

  71. Steinmetz H, Li J, Fu C, Zaburannyi N, Kunze B, Harmrolfs K, Schmitt V, Herrmann J, Reichenbach H, Hofle G, et al. 2016. Isolation, structure elucidation, and (bio)synthesis of haprolid, a cell-type-specific myxobacterial cytotoxin. Angew. Chem. Int. Ed. 55, 10113-10117. 

  72. Stoiber K, Naglo O, Pernpeintner C, Zhang S, Koeberle A, Ulrich M, Werz O, Muller R, Zahler S, Lohmuller T, et al. 2018. Targeting de novo lipogenesis as a novel approach in anti-cancer therapy. Br. J. Cancer 118, 43-51. 

  73. Surup F, Viehrig K, Rachid S, Plaza A, Maurer CK, Hartmann RW, and Muller R. 2018. Crocadepsins-depsipeptides from the myxobacterium Chondromyces crocatus found by a genome mining approach. ACS Chem. Biol. 13, 267-272. 

  74. Tomura T, Nagashima S, Yamazaki S, Iizuka T, Fudou R, and Ojika M. 2017. An unusual diterpene-enhygromic acid and deoxyenhygrolides from a marine myxobacterium, Enhygromyxa sp. Mar. Drugs 15, E109. 

  75. Trowitzsch W, Witte L, and Reichenbach H. 1981. Geosmin from earthy smelling culture of Nannocystis exedens (Myxobacterales). FEMS Microbiol. Lett. 12, 257-226. 

  76. Tsai H and Hirsch H. 1981. The primary structure of fulvocin C from Myxococcus fulvus. Biochim. Biophys Acta 667, 213-217. 

  77. Tyc O, Song C, Dickschat JS, Vos M, and Garbeva P. 2017. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 25, 280-292. 

  78. Vahlensieck HF, Pridzun L, Reichenbach H, and Hinnen A. 1994. Identification of the yeast ACC1 gene product (acetyl-CoA carboxylase) as the target of the polyketide fungicide soraphen A. Curr. Genet. 25, 95-100. 

  79. Viehrig K, Surup F, Volz C, Herrmann J, Abou Fayad A, Adam S, Kohnke J, Trauner D, and Muller R. 2017. Structure and biosynthesis of crocagins: polycyclic posttranslationally modified ribosomal peptides from Chondromyces crocatus. Angew. Chem. Int. Ed. 56, 7407-7410. 

  80. Volz C, Kegler C, and Muller R. 2012. Enhancer binding proteins act as hetero-oligomers and link secondary metabolite production to myxococcal development, motility, and predation. Chem. Biol. 19, 1447-1459. 

  81. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Muller R, Wohlleben W, et al. 2015. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43, W237-W243. 

  82. Weissman KJ and Muller R. 2009. A brief tour of myxobacterial secondary metabolism. Bioorg. Med. Chem. 17, 2121-2136. 

  83. Weissman KJ and Muller R. 2010. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat. Prod. Rep. 27, 1276-1295. 

  84. Wenzel SC and Muller R. 2007. Myxobacterial natural product assembly lines: fascinating examples of curious biochemistry. Nat. Prod. Rep. 24, 1211-1224. 

  85. Wenzel SC and Muller R. 2009. The impact of genomics on the exploitation of the myxobacterial secondary metabolome. Nat. Prod. Rep. 26, 1385-1407. 

  86. Xiao Y, Wei X, Ebright R, and Wall D. 2011. Antibiotic production by myxobacteria plays a role in predation. J. Bacteriol. 193, 4626-4633. 

  87. Yamamoto E, Muramatsu H, and Nagai K. 2014. Vulgatibacter incomptus gen. nov., sp. nov. and Labilithrix luteola gen. nov., sp. nov., two myxobacteria isolated from soil in Yakushima Island, and the description of Vulgatibacteraceae fam. nov., Labilitrichaceae fam. nov. and Anaeromyxobacteraceae fam. nov. Int. J. Syst. Evol. Microbiol. 64, 3360-3368. 

  88. Yang C, Kwon S, Kim SJ, Jeong M, Park JY, Park D, Hong SJ, Jung JW, and Kim C. 2017. Identification of indothiazinone as a natural antiplatelet agent. Chem. Biol. Drug 90, 873-882. 

  89. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, and Chun J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613-1617. 

  90. Ziemert N, Alanjary M, and Weber T. 2016. The evolution of genome mining in microbes - a review. Nat. Prod. Rep. 33, 988-1005. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로