$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

미생물 진화 연구를 위한 유전체 역학과 옥스포드 나노포어 염기서열분석 기술의 활용
Genomic epidemiology for microbial evolutionary studies and the use of Oxford Nanopore sequencing technology 원문보기

Korean journal of microbiology = 미생물학회지, v.54 no.3, 2018년, pp.188 - 199  

최상철 (성신여자대학교 지식서비스공과대학 바이오생명공학과)

초록
AI-Helper 아이콘AI-Helper

다양한 미생물학 연구 분야의 발전에 힘입어 유전체역학은 발전되어 왔다. 예를 들어, 대용량서열화 기술의 발전으로 미생물 유전체의 수는 급속도로 증가해 오고 있다. 이러한 풍부한 유전체 데이터는 전에는 보지 못한 보다 더 정확한 미생물종의 동정에 도움을 주는 균주종 타이핑에 새로운 기회를 제공한다. 유전체역학은 유전체에 일반적인 유전자를 찾고 표기하는 것 뿐만 아니라 항균 저항성 유전자를 찾을 수 있다. 균주종 타이핑과 항균 저항성 유전자 찾기는 각각 종을 구분하고 유전체내의 유전자 위치를 결정하는 유전체 역학의 방법들로 시간에 따른 변화가 없는 측면이다. 이에 반하여, 하나의 숙주가 어떤 숙주를 감염시켰는지 알아내기 위해서는 감염된 숙주들 사이의 시간에 따른 동적인 전염 경로를 추론해야 한다. 이렇게, 균주종 타이핑, 항균 저항성 유전자 찾기, 전염 계통수 추론을 통하여 유전체역학의 궁극적인 목표 중 하나인 미생물성 전염병을 보다 효율적으로 감시할 수 있을 것으로 기대된다. 그리고, 대용량서열화 기술 중, 3세대 서열화기술 중 하나인 옥스포드 나노포어 MinION의 보다 나은 휴대성과 빠른 서열화의 성능 덕분에 유전체역학은 더 많은 발전을 거듭할 것으로 보인다. 이에, 본 연구는 항균 저항성 유전자를 찾고 전염병 경로를 추론하는 계산적인 방법에 대하여 살펴보고, 미생물 유전체역학에서 MinION이 응용된 예들에 대하여 논하였다.

Abstract AI-Helper 아이콘AI-Helper

Genomic epidemiology exploits various basic microbial research areas. High-throughput sequencing technologies dramatically have been expanding the number of microbial genome sequences available. Abundant genomic data provide an opportunity to perform strain typing more effectively, helping identify ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 후)유전체 역학은">유전체역학은 더 많은 발전을 거듭할 것으로 보인다. 이에, 본 연구는 항균 저항성 유전자를 찾고 전염병 경로를 추론하는 계산적인 방법에 대하여 살펴보고, 미생물 유전 체역학에서 MinION이 응용된 예들에 대하여 논하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (89)

  1. Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, de Jonge BL, et al. 1999. Genomicsequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176-180. 

  2. Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, Wain J, and O'Grady J. 2015. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 33, 296-300. 

  3. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al. 2008. The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9, 75. 

  4. Bayliss SC, Hunt VL, Yokoyama M, Thorpe HA, and Feil EJ. 2017. The use of Oxford Nanopore native barcoding for complete genome assembly. GigaScience 6, 1-6. 

  5. Beaton A, Lood C, Cunningham-Oakes E, MacFadyen A, Mullins AJ, Bestawy WE, Botelho J, Chevalier S, Coleman S, Dalzell C, et al. 2018. Community-led comparative genomic and phenotypic analysis of the aquaculture pathogen Pseudomonas baetica a390t sequenced by ion semiconductor and nanopore technologies. FEMS Microbiol. Lett. 365, 103. 

  6. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, et al. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53-59. 

  7. Benitez-Paez A, Portune KJ, and Sanz Y. 2016. Species-level resolution of 16S rRNA gene amplicons sequenced through the $MinION^{TM}$ portable nanopore sequencer. GigaScience 5, 4. 

  8. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, et al. 2015. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat. Commun. 6, 1761. 

  9. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563-569. 

  10. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, et al. 2015. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med. 7, 321. 

  11. Cottam EM, Thebaud G, Wadsworth J, Gloster J, Mansley L, Paton DJ, King DP, and Haydon DT. 2008. Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus. Proc. R. Soc. B 275, 887-895. 

  12. Deamer D, Akeson M, and Branton D. 2016. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518-524. 

  13. De Maio N, Wu CH, O'Reilly KM, and Wilson D. 2015. New routes to phylogeography: A Bayesian structured coalescent approximation. PLoS Genet. 11, e1005421. 

  14. De Maio N, Wu CH, and Wilson DJ. 2016. SCOTTI: Efficient reconstruction of transmission within outbreaks with the structured coalescent. PLoS Comput. Biol. 12, e1005130. 

  15. de Man TJB and Limbago BM. 2016. SSTAR, a stand-alone easy-to-use antimicrobial resistance gene predictor. mSphere 1, e00050-15. 

  16. Deschamps S, Mudge J, Cameron C, Ramaraj T, Anand A, Fengler K, Hayes K, Llaca V, Jones TJ, and May G. 2016. Characterization, correction and de novo assembly of an Oxford Nanopore genomic dataset from Agrobacterium tumefaciens. Sci. Rep. 6, 28625. 

  17. Didelot X, Fraser C, Gardy J, and Colijn C. 2017. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol. Biol. Evol. 34, 997-1007. 

  18. Didelot X, Gardy J, and Colijn C. 2014. Bayesian inference of infectious disease transmission from whole-genome sequence data. Mol. Biol. Evol. 31, 1869-1879. 

  19. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323, 133-138. 

  20. Eybpoosh S, Haghdoost AA, Mostafavi E, Bahrampour A, Azadmanesh K, and Zolala F. 2017. Molecular epidemiology of infectious diseases. Electron. Physician 9, 5149-5158. 

  21. Feil EJ, Li BC, Aanensen DM, Hanage WP, and Spratt BG. 2004. eBURST: Inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 186, 1518-1530. 

  22. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496-512. 

  23. George S, Pankhurst L, Hubbard A, Votintseva A, Stoesser N, Sheppard AE, Mathers A, Norris R, Navickaite I, Eaton C, et al. 2017. Resolving plasmid structures in Enterobacteriaceae using the MinION nanopore sequencer: Assessment of MinION and MinION/Illumina hybrid data assembly approaches. Microb. Genom. 3, e000118. 

  24. Gong L, Huang YT, Wong CH, Chao WC, Wu ZY, Wei CL, and Liu PY. 2018. Culture-independent analysis of liver abscess using nanopore sequencing. PLoS One 13, e0190853. 

  25. Goordial J, Altshuler I, Hindson K, Chan-Yam K, Marcolefas E, and Whyte LG. 2017. In situ field sequencing and life detection in remote ( $79^{\circ}26'N$ ) Canadian high arctic permafrost ice wedge microbial communities. Front. Microbiol. 8, 2594. 

  26. Gorrie CL, Mirceta M, Wick RR, Judd LM, Wyres KL, Thomson NR, Strugnell RA, Pratt NF, Garlick JS, Watson KM, et al. 2018. Antimicrobial resistant Klebsiella pneumoniae carriage and infection in specialized geriatric care wards linked to acquisition in the referring hospital. Clin. Infect. Dis. 11, 589. 

  27. Green ED. 2001. Strategies for the systematic sequencing of complex genomes. Nat. Rev. Genet. 2, 573-583. 

  28. Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM, Mumford JA, and Holmes EC. 2004. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327-332. 

  29. Guthrie JL and Gardy JL. 2017. A brief primer on genomic epidemiology: Lessons learned from Mycobacterium tuberculosis. Ann. N. Y. Acad. Sci. 1388, 59-77. 

  30. Hall M, Woolhouse M, and Rambaut A. 2015. Epidemic reconstruction in a phylogenetics framework: Transmission trees as partitions of the node set. PLoS Comput. Biol. 11, e1004613. 

  31. Hawkey J, Ascher DB, Judd LM, Wick RR, Kostoulias X, Cleland H, Spelman DW, Padiglione A, Peleg AY, and Holt KE. 2018. Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection. Microb. Genom. 4, 148. 

  32. Heather JM and Chain B. 2016. The sequence of sequencers: The history of sequencing DNA. Genomics 107, 1-8. 

  33. Hyeon JY, Li S, Mann DA, Zhang S, Li Z, Chen Y, and Deng X. 2017. Quasi-metagenomics and realtime sequencing aided detection and subtyping of Salmonella enterica from food samples. Appl. Environ. Microbiol. 84, e02340-17. 

  34. Imai K, Tarumoto N, Runtuwene LR, Sakai J, Hayashida K, Eshita Y, Maeda R, Tuda J, Ohno H, Murakami T, et al. 2018. An innovative diagnostic technology for the codon mutation C580Y in kelch13 of Plasmodium falciparum with MinION nanopore sequencer. Malar. J. 17, 217. 

  35. Inouye M, Dashnow H, Schultz MB, Zobel J, and Holt KE. 2014. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med. 6, 90. 

  36. Iwai H, Kato-Miyazawa M, Kirikae T, and Miyoshi-Akiyama T. 2015. CASTB (the comprehensive analysis server for the Mycobacterium tuberculosis complex): A publicly accessible web server for epidemiological analyses, drug-resistance prediction and phylogenetic comparison of clinical isolates. Tuberculosis 95, 843-844. 

  37. Jacob F and Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318-356. 

  38. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, et al. 2017. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566-D573. 

  39. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, Wimalarathna H, Harrison OB, Sheppard SK, Cody AJ, et al. 2012. Ribosomal multilocus sequence typing: Universal characterization of bacteria from domain to strain. Microbiology 158, 1005-1015. 

  40. Jombart T, Cori A, Didelot X, Cauchemez S, Fraser C, and Ferguson N. 2014. Bayesian reconstruction of disease outbreaks by combining epidemiologic and genomic data. PLoS Comput. Biol. 10, e1003457. 

  41. Judge K, Hunt M, Reuter S, Tracey A, Quail MA, Parkhill J, and Peacock SJ. 2016. Comparison of bacterial genome assembly software for MinION data and their applicability to medical microbiology. Microb. Genom. 2, e000085. 

  42. Kerkhof LJ, Dillon KP, Haggblom MM, and McGuinness LR. 2017. Profiling bacterial communities by MinION sequencing of ribosomal operons. Microbiome 5, 116. 

  43. Kilbourne ED. 1973. The molecular epidemiology of influenza. J. Infect. Dis. 127, 478-487. 

  44. Kilianski A, Roth PA, Liem AT, Hill JM, Willis KL, Rossmaier RD, Marinich AV, Maughan MN, Karavis MA, Kuhn JH, et al. 2016. Use of unamplified RNA/cDNA-hybrid nanopore sequencing for rapid detection and characterization of RNA viruses. Emerg. Infect. Dis. 22, 1448-1451. 

  45. Klemm E and Dougan G. 2016. Advances in understanding bacterial pathogenesis gained from whole-genome sequencing and phylogenetics. Cell Host Microbe 19, 599-610. 

  46. Klinkenberg D, Backer JA, Didelot X, Colijn C, and Wallinga J. 2017. Simultaneous inference of phylogenetic and transmission trees in infectious disease outbreaks. PLoS Comput. Biol. 13, e1005495. 

  47. Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, Karpinets T, Lund O, Kora G, Wassenaar T, et al. 2015. Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genomics 15, 141-161. 

  48. Lapierre P and Gogarten JP. 2009. Estimating the size of the bacterial pan-genome. Trends Genet. 25, 107-110. 

  49. Lau MSY, Marion G, Streftaris G, and Gibson G. 2015. A systematic Bayesian integration of epidemiological and genetic data. PLoS Comput. Biol. 11, e1004633. 

  50. Loman NJ, Quick J, and Simpson JT. 2015. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 12, 733-735. 

  51. Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, et al. 1998. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 95, 3140-3145. 

  52. Maiden MCJ, van Rensburg MJJ, Bray JE, Earle SG, Ford SA, Jolley KA, and McCarthy ND. 2013. MLST revisited: The gene-by-gene approach to bacterial genomics. Nat. Rev. Microbiol. 11, 728-736. 

  53. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376-380. 

  54. McArthur AG and Tsang KK. 2017. Antimicrobial resistance surveillance in the genomic age. Ann. N. Y. Acad. Sci. 1388, 78-91. 

  55. Metzker ML. 2010. Sequencing technologies - the next generation. Nat. Rev. Genet. 11, 31-46. 

  56. Mollentze N, Nel LH, Townsend S, le Roux K, Hampson K, Haydon DT, and Soubeyrand S. 2014. A Bayesian approach for inferring the dynamics of partially observed endemic infectious diseases from space-time-genetic data. Proc. Biol. Sci. 281, 20133251-20133251. 

  57. Morelli MJ, Thebaud G, Chadoeuf J, King DP, Haydon DT, and Soubeyrand S. 2012. A Bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data. PLoS Comput. Biol. 8, e1002768. 

  58. Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Verezemska O, Isbandi M, Thomas AD, Ali R, Sharma K, Kyrpides NC, et al. 2017. Genomes online database (GOLD) v.6: Data updates and feature enhancements. Nucl. Acids Res. 45, D446-D456. 

  59. Nakano M, Komatsu J, Matsuura SI, Takashima K, Katsura S, and Mizuno A. 2003. Single-molecule PCR using water-in-oil emulsion. J. Biotechnol. 102, 117-124. 

  60. Numminen E, Chewapreecha C, Siren J, Turner C, Turner P, Bentley SD, and Corander J. 2014. Two-phase importance sampling for inference about transmission trees. Proc. Biol. Sci. 281, 20141324-20141324. 

  61. Pritchard JK, Stephens M, and Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959. 

  62. Quick J, Ashton P, Calus S, Chatt C, Gossain S, Hawker J, Nair S, Neal K, Nye K, Peters T, et al. 2015. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol. 16, 7. 

  63. Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, Oliveira G, Robles-Sikisaka R, Rogers TF, Beutler NA, et al. 2017. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat. Protoc. 12, 1261-1276. 

  64. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, et al. 2016. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228-232. 

  65. Rames E and Macdonald J. 2018. Evaluation of MinION nanopore sequencing for rapid enterovirus genotyping. Virus Res. 252, 8-12. 

  66. Risse J, Thomson M, Patrick S, Blakely G, Koutsovoulos G, Blaxter M, and Watson M. 2015. A single chromosome assembly of Bacteroides fragilis strain BE1 from Illumina and MinION nanopore sequencing data. GigaScience 4, 60. 

  67. Romero-Severson E, Skar H, Bulla I, Albert J, and Leitner T. 2014. Timing and order of transmission events is not directly reflected in a pathogen phylogeny. Mol. Biol. Evol. 31, 2472-2482. 

  68. Rowe W, Baker KS, Verner-Jeffreys D, Baker-Austin C, Ryan JJ, Maskell D, and Pearce G. 2015. Search engine for antimicrobial resistance: A cloud compatible pipeline and web interface for rapidly detecting antimicrobial resistance genes directly from sequence data. PLoS One 10, e0133492. 

  69. Russell JA, Campos B, Stone J, Blosser EM, Burkett-Cadena N, and Jacobs JL. 2018. Unbiased strain-typing of arbovirus directly from mosquitoes using nanopore sequencing: A field-forward biosurveillance protocol. Sci. Rep. 8, 5417. 

  70. Sanger F, Nicklen S, and Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467. 

  71. Schmidt K, Mwaigwisya S, Crossman LC, Doumith M, Munroe D, Pires C, Khan AM, Woodford N, Saunders NJ, Wain J, et al. 2017. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J. Antimicrob. Chemother. 72, 104-114. 

  72. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermuller J, Reinhardt R, et al. 2010. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250-255. 

  73. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, and Church GM. 2005. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728-1732. 

  74. Simner PJ, Antar AAR, Hao S, Gurtowski J, Tamma PD, Rock C, Opene BNA, Tekle T, Carroll KC, Schatz MC, et al. 2018. Antibiotic pressure on the acquisition and loss of antibiotic resistance genes in Klebsiella pneumoniae. J. Antimicrob. Chemother. 37, 1288. 

  75. Staden R. 1979. A strategy of DNA sequencing employing computer programs. Nucleic Acids Res. 6, 2601-2610. 

  76. Steiner A, Stucki D, Coscolla M, Borrell S, and Gagneux S. 2014. KvarQ: Targeted and direct variant calling from fastq reads of bacterial genomes. BMC Genomics 15, 881. 

  77. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, and Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614-6624. 

  78. Tettelin H, Riley D, Cattuto C, and Medini D. 2008. Comparative genomics: The bacterial pan-genome. Curr. Opin. Microbiol. 11, 472-477. 

  79. Traynor BJ. 2009. The era of genomic epidemiology. Neuroepidemiology 33, 276-279. 

  80. Votintseva AA, Bradley P, Pankhurst L, del Ojo Elias C, Loose M, Nilgiriwala K, Chatterjee A, Smith EG, Sanderson N, Walker TM, et al. 2017. Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J. Clin. Microbiol. 55, 1285-1298. 

  81. Wick RR, Judd LM, Gorrie CL, and Holt KE. 2017. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb. Genom. 3, e000132. 

  82. Wick RR, Schultz MB, Zobel J, and Holt KE. 2015. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352. 

  83. Worby CJ, Lipsitch M, and Hanage WP. 2014. Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data. PLoS Comput. Biol. 10, e1003549. 

  84. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. 2009. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462, 1056-1060. 

  85. Xia Y, Li AD, Deng Y, Jiang XT, Li LG, and Zhang T. 2017. MinION nanopore sequencing enables correlation between resistome phenotype and genotype of coliform bacteria in municipal sewage. Front. Microbiol. 8, 2105. 

  86. Yin X, Jiang XT, Chai B, Li L, Yang Y, Cole JR, Tiedje JM, and Zhang T. 2018. ARGs-OAP v2.0 with an expanded SARG database and hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics 535, 435. 

  87. You Y, Kou Y, Niu L, Jia Q, Liu Y, Davies MR, Walker MJ, Zhu J, and Zhang J. 2018. Complete genome sequence of a Streptococcus pyogenes serotype M12 scarlet fever outbreak isolate from China, compiled using Oxford Nanopore and Illumina sequencing. Genome Announc. 6, e00389-18. 

  88. Ypma RJF, van Ballegooijen WM, and Wallinga J. 2013. Relating phylogenetic trees to transmission trees of infectious disease outbreaks. Genetics 195, 1055-1062. 

  89. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, and Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640-2644. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로