Carrageena은 전세계적으로 안전한 식품첨가물로 승인되어 오랜 기간 다양한 식품, 기타 가공품에 사용되어지고 있다. 다른 한편으로, 이 Carrageenan은 동물 실험에서 염증 유도 물질로 확인되어 염증 유발 실험에 현재까지도 매우 빈번히 사용 되고 있다. 또한 이 Carrageenan을 고온과 강산에서 처리하여 부분적으로 분해한 degraded Carrageenan은 염증 유도 능이 Carrageenan 보다 더 강한 것으로 알려져 있다. 면역 보강제의 중요한 특성 가운데 하나는 선천면역(대표적으로 염증반응)의 활성화 인 것이 잘 알려져 있다. 그러나 현재까지 Carrageenan이나 degraded Carrageenan의 면역 보강제로서의 효과에 관하여 상세한 비교 연구는 수행되어 지지 않았다. 본 연구의 목적은 Carrageenan과 degraded Carrageenan의 면역 보강제로서의 효과를 비교 분석하는데 있다. 실험 동물은 마우스를 사용하였으며, 난 알부민을 항원으로, 피하면역을 수행하여 각각의 면역 보강제 효과를 항체 형성 정도로 조사하였다. Carrageenan이나 degraded Carrageenan 모두 항원 단독으로 면역한 것과 비교할 때 유의적으로 높은 IgG 생성 능을 보였다. 추가적으로 항원 특이적 IgG1과 IgG2a를 조사한 결과, 이들 Carrageenan, degraded Carrageenan은 본 실험에서 양성 대조 군으로 사용한 보강제, Complete Freund's adjuvant와 비교 할 때 IgG2a 보다는 IgG1 생성 능이 높게 유도되는 것이 확인되었다. 이들 결과를 종합하면 염증 유발 능이 보다 강한 degraded carrageenan의 면역 보강제 효과는 carrageenan과 유사한 정도로 확인되었으며, 이들 모두 IgG2 보다는 IgG1 생성 효과가 강한 것으로 나타났다.
Carrageena은 전세계적으로 안전한 식품첨가물로 승인되어 오랜 기간 다양한 식품, 기타 가공품에 사용되어지고 있다. 다른 한편으로, 이 Carrageenan은 동물 실험에서 염증 유도 물질로 확인되어 염증 유발 실험에 현재까지도 매우 빈번히 사용 되고 있다. 또한 이 Carrageenan을 고온과 강산에서 처리하여 부분적으로 분해한 degraded Carrageenan은 염증 유도 능이 Carrageenan 보다 더 강한 것으로 알려져 있다. 면역 보강제의 중요한 특성 가운데 하나는 선천면역(대표적으로 염증반응)의 활성화 인 것이 잘 알려져 있다. 그러나 현재까지 Carrageenan이나 degraded Carrageenan의 면역 보강제로서의 효과에 관하여 상세한 비교 연구는 수행되어 지지 않았다. 본 연구의 목적은 Carrageenan과 degraded Carrageenan의 면역 보강제로서의 효과를 비교 분석하는데 있다. 실험 동물은 마우스를 사용하였으며, 난 알부민을 항원으로, 피하면역을 수행하여 각각의 면역 보강제 효과를 항체 형성 정도로 조사하였다. Carrageenan이나 degraded Carrageenan 모두 항원 단독으로 면역한 것과 비교할 때 유의적으로 높은 IgG 생성 능을 보였다. 추가적으로 항원 특이적 IgG1과 IgG2a를 조사한 결과, 이들 Carrageenan, degraded Carrageenan은 본 실험에서 양성 대조 군으로 사용한 보강제, Complete Freund's adjuvant와 비교 할 때 IgG2a 보다는 IgG1 생성 능이 높게 유도되는 것이 확인되었다. 이들 결과를 종합하면 염증 유발 능이 보다 강한 degraded carrageenan의 면역 보강제 효과는 carrageenan과 유사한 정도로 확인되었으며, 이들 모두 IgG2 보다는 IgG1 생성 효과가 강한 것으로 나타났다.
Carrageenan (CGN) has been used as a safe food additive for several decades. CGN has also been widely used to induce inflammation in various animal models. Likewise, degraded CGN (dCGN), which is produced by subjecting CGN to acid hydrolysis, also induces inflammation and does so more effectively th...
Carrageenan (CGN) has been used as a safe food additive for several decades. CGN has also been widely used to induce inflammation in various animal models. Likewise, degraded CGN (dCGN), which is produced by subjecting CGN to acid hydrolysis, also induces inflammation and does so more effectively than CGN. One of the most important characteristics of an immunological adjuvant is its ability to activate innate immunity. The immune-adjuvant effects of CGN and dCGN have not yet been studied in detail. The purpose of this study was to evaluate the immunological adjuvant activities of both CGN and dCGN, which was done by comparing the levels of an ovalbumin (OVA)-specific antibody after treatment with OVA in the absence or presence of CGN or dCGN in plasma from immunized mice. CGN and dCGN showed similar levels of adjuvant activity, as evidenced by increased antibody titer. Specifically, both CGN and dCGN significantly increased the levels of OVA-specific IgG, IgG1, and IgG2a antibodies in the plasma as compared with OVA alone (the control). However, compared to the positive control (Freund's adjuvant), both CGN and dCGN caused greater increases in IgG1 than in IgG2a. These results suggest that CGN and dCGN have similar adjuvant activities and produce more IgG1 antibodies than IgG2a.
Carrageenan (CGN) has been used as a safe food additive for several decades. CGN has also been widely used to induce inflammation in various animal models. Likewise, degraded CGN (dCGN), which is produced by subjecting CGN to acid hydrolysis, also induces inflammation and does so more effectively than CGN. One of the most important characteristics of an immunological adjuvant is its ability to activate innate immunity. The immune-adjuvant effects of CGN and dCGN have not yet been studied in detail. The purpose of this study was to evaluate the immunological adjuvant activities of both CGN and dCGN, which was done by comparing the levels of an ovalbumin (OVA)-specific antibody after treatment with OVA in the absence or presence of CGN or dCGN in plasma from immunized mice. CGN and dCGN showed similar levels of adjuvant activity, as evidenced by increased antibody titer. Specifically, both CGN and dCGN significantly increased the levels of OVA-specific IgG, IgG1, and IgG2a antibodies in the plasma as compared with OVA alone (the control). However, compared to the positive control (Freund's adjuvant), both CGN and dCGN caused greater increases in IgG1 than in IgG2a. These results suggest that CGN and dCGN have similar adjuvant activities and produce more IgG1 antibodies than IgG2a.
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
문제 정의
In addition to these effects, we speculated that CGN also exhibits depot effects because of its high viscosity. These identified or estimated effects of CGN and dCGN led us to this study. For these reasons, we examined the adjuvant effects of CGN and d-CGN.
These identified or estimated effects of CGN and dCGN led us to this study. For these reasons, we examined the adjuvant effects of CGN and d-CGN.
가설 설정
Regarding the initial cellular TNF-α secretion experiments, we hypothesized that the adjuvant effect of dCGN would be relatively higher than that of CGN.
제안 방법
After a 1-week adaptation period, mice from each group were injected subcutaneously twice with OVA (2 μg) alone or OVA plus CGN or dCGN (100 or 500 μg/mouse) at 2-week intervals.
To investigate whether CGN and/or dCGN induced the release of TNF-α in RAW264.7 cells, TNF-α was measured in culture supernatants from CGN- or dCGN-treated cells.
To evaluate the immunological adjuvant effects of CGN and dCGN, we analyzed OVA-specific antibody levels in blood plasma of mice immunized with OVA or OVA mixed with CGN or dCGN. Immunization was performed twice at 2-week intervals and plasma was collected 2 weeks after the primary immunization and 2 weeks after boosting.
Mice from each group were injected twice subcutaneously with OVA (2 μg) alone or OVA plus CGN or dCGN (100 or 500 μg/mouse) at 2-week intervals.
대상 데이터
Female BALB/c mice (aged 8-10 weeks) were used for this study. Mice were provided drinking water and a normal diet ad libitum and were maintained under a 12 hr light-dark cycle at 24±1℃ with 50% humidity.
데이터처리
Statistical differences among groups were analyzed using one-way analysis of variance. Data are shown as the mean±standard error of the mean, and significance was defined as p<0.
성능/효과
However, until now, the immunological adjuvant effects of CGN and dCGN have not been studied in detail. In this study, our results showed that both CGN and dCGN has similar adjuvant effects and predominantly produce the IgG1 antibody relative to IgG2a.
참고문헌 (21)
Anver, M. R. and Cohen, J. 1976. Animal model of human disease. Ulcerative colitis, Animal model: ulcerative colitis induced in guinea pigs with degraded carrageenan. Am. J. Pathol. 84, 431-434.
Ariffin, S. H., Yeen, W. W., Abidin, I. Z., Abdul Wahab, R. M., Ariffin, Z. Z. and Senafi, S. 2014. Cytotoxicity effect of degraded and undegraded Kappa and iota carrageenan in human intestine and liver cell lines. BMC Complement Altern. Med. 14, 508-523.
Barth, C. R., Funchal, G. A., Luft, C., de Oliveira, J. R., Porto, B. N. and Donadio, M. V. 2016. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. Eur. J. Immunol. 46, 964-970.
Campo, V. L., Kawano, D. F., Silva, D. B. and Carvalho, D. I. 2009. Carrageenans: Biological properties, chemical modifications and structural analysis- A review. Carbohydr. Polym. 77, 167-180.
Ekstrom, L. G., Kuivinen, J. and Johansson, G. 1983. Molecular weight distribution and hydrolysis behavior of carrageenans. Carbohydr. Res. 116, 89-94..
Fischetti, L., Zhong, Z., Pinder, C. L., Tregoning, J. S. and Shattock, R. J. 2017. The synergistic effects of combining TLR ligand based adjuvants on the cytokine response are dependent upon p38/JNK signaling. Cytokine 99, 287-296.
Jiao, G., Yu, G., Zhang, J. and Ewart, H. S. 2011. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar. Drugs 9, 196-223.
Oohashi, Y., Ishioka, T., Wakabayashi, K. and Kuwabara, N. 1981. A study on carcinogenesis induced by degraded carrageenan arising from squamous metaplasia of the rat colorectum. Cancer Lett. 14, 267-272.
Prajapati, V. D., Maheriya, P. M., Jani, G. K. and Solanki, H. K. 2014. Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr. Polym. 105, 97-112.
Schijns, V. E. and Tangeras, A. 2005. Vaccine adjuvant technology: from theoretical mechanisms to practical approaches. Dev. Biol. (Basel) 121, 127-134.
Tobacman, J. K. 2001. Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environ. Health Perspect. 109, 983-994.
Zia, K. M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A. and Zuber, M. 2017. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int. J. Biol. Macromol. 96, 282-301.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.