$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] CMAQ-HDDM을 이용한 광양만 오존 농도의 국외 기여도 분석
Quantitative Assessment on Contributions of Foreign NOx and VOC Emission to Ozone Concentrations over Gwangyang Bay with CMAQ-HDDM Simulations 원문보기

한국대기환경학회지 = Journal of Korean Society for Atmospheric Environment, v.34 no.5, 2018년, pp.708 - 726  

배창한 (아주대학교 환경공학과) ,  김병욱 (미국 조지아주 환경청) ,  김현철 (미국 국립해양대기청) ,  김순태 (아주대학교 환경공학과)

Abstract AI-Helper 아이콘AI-Helper

In this study, we examined the contribution of nitrogen oxides and volatile organic compounds emitted from China and Japan to ozone concentrations over Gwangyang-bay, South Korea. We used a chemical transport model, Community Multi-scale Air Quality model, and its instrumented sensitivity tool, High...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • , 2011). 광양만 지역은 다량의 VOC 배출 지역으로, 국지적 VOC 배출량의 불확실성이 본 연구에서 모사한 오존 농도 및 국외 배출량과 광양만 지역 오존 농도 사이의 민감도 계수에 미치는 영향을 추가적으로 검토하였다. 이를 위해 광양만 지역의 고농도 오존 현상을 분석한 선행연구 결과를 참고하여 VOC 구성비를 조정한 민감도 실험을 수행하였다.
  • 본 연구는 장거리 수송의 관점에서 지표 100 m 상공에서 공기괴의 유적선 분석을 수행하였기에 관측 농도에 영향을 미친 실제 공기괴의 이동과는 차이를 보일 수 있다. 다만 이러한 유적선 분석은 이동 경로를 추정하기 위한 것으로 실제 3차원 광화학 모델 분석에서는 고도별 풍향, 풍속 차이와 수직 혼합 과정이 반영된 결과가 수치로 제시되었다.
  • 본 연구에서는 고농도 오존이 자주 발생하는 광양만 지역의 효과적인 오존 관리에 앞서, 장거리 수송에 의한 국외 배출량이 광양만 오존 농도에 미치는 기여도를 정량적으로 분석하였으며, 공기괴의 유입 경로에 따른 기여도 차이를 제시하였다.
  • , 2003)을 활용하였다. 이를 통해 광양만 지역의 고농도 오존에 대한 주요 유입경로와 유입시간에 따른 국외 기여도 변화 특성을 제시하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
고농도 오존 대책 마련을 위해서 정확한 원인 분석이 중요한 이유는? 2012년 이후 2013년 6회, 2014년 10회, 2015년 7회, 2016년 22회로 최근 다시 증가를 보이고 있다. 앞서 언급하였듯이 고농도 오존의 발현은 국지적 배출과 장거리 이동 등 다양한 원인에 기인하며, 장소, 발생 시기, 기상 조건 등에 따라 그 원인이 서로 달라질 수 있다 (Kim and Lee, 2011; Ha et al., 2006; Jaffe et al.
지표면에 존재하는 오존이란? 지표면에 존재하는 오존(Ozone)은 인체 및 자연 환경에 유해한 영향을 미치는 대기오염물질로 알려져 있으며 (U.S.
광양만 지역에서 오존 농도 개선이 쉽지 않은 이유는? 환경부에서는 이 지역을 ‘대기환경규제지역’으로, 광양만 지역 내의 여수 국가산업단지는 ‘대기보 전특별대책지역’으로 지정하고 있다. 광양만 지역에는 오존의 전구물질인 NOx(nitrogen oxides)와 VOCs(volatile organic compounds)를 대규모로 배출하는 사업장과 산업단지가 위치하고 있으며, 복잡한 해안선 등으로 인한 기상학적 요인까지 더해져 오존 농도 개선이 쉽지 않다(NIER, 2011).
질의응답 정보가 도움이 되었나요?

참고문헌 (60)

  1. Airkorea (2018) https://www.airkorea.or.kr/ (accessed on Jan. 12, 2018). 

  2. Altenstedt, J., Pleijel, K. (2000) An alternative approach to photochemical ozone creation potentials applied under European conditions, Journal of the Air and Waste Management Association, 50(6), 1023-1036. 

  3. Amann, M. (2008) Health risks of ozone from long-range transboundary air pollution, WHO Regional Office Europe, http://www.euro.who.int/__data/assets/pdf_file/0005/78647/E91843.pdf (accessed on Oct. 22, 2018). 

  4. An, J., Ueda, H., Wang, Z., Matsuda, K., Kajino, M., Cheng, X. (2002) Simulations of monthly mean nitrate concentrations in precipitation over East Asia, Atmospheric Environment, 36(26), 4159-71. 

  5. Benjey, W., Houyoux, M., Susick, J. (2001) Implementation of the SMOKE emission data processor and SMOKE tool input data processor in Models-3, US EPA, https://nepis.epa.gov/Exe/ZyPDF.cgi/P100P6M5.PDF?DockeyP100P6M5.PDF (accessed on Oct. 22, 2018). 

  6. Blanchard, C.L. (1999) Methods for attributing ambient air pollutants to emission sources, Annual Review of Energy and the Environment, 24(1), 329-365. 

  7. Bycenkien?, S., Dudoitis, V., Ulevicius, V. (2014) The use of trajectory cluster analysis to evaluate the long-range transport of black carbon aerosol in the south-eastern Baltic region, Advances in Meteorology, 2014(11). 

  8. Byun, D., Schere, K.L. (2006) Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system, Applied Mechanics Reviews, 59(2), 51-77. 

  9. Carlton, A.G., Baker, K.R. (2011) Photochemical Modeling of the Ozark Isoprene Volcano: MEGAN, BEIS, and Their Impacts on Air Quality Predictions, Environmental Science and Technology, 45(10), 4438-4445. 

  10. Carter, W.P.L. (1999) Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment, Report to California Air Resources Board, Contracts 92-329, 95-308, http://www.engr.ucr.edu/-carter/pubs/s99doc.pdf (accessed on Oct. 22, 2018). 

  11. Cho, K.T., Kim, J.C., Hong, J.H. (2006) A Study on the Comparison of Biogenic VOC (BVOC) Emissions Estimates by BEIS and CORINAIR Methodologies, Journal of Korean Society for Atmospheric Environment, 22(2), 167-177. (in Korean with English abstract) 

  12. Choi, K.-C., Lee, J.-J., Bae, C., Kim, C.-H., Kim, S., Chang, L.-S., Ban, S.-J., Lee, S.-J., Kim, J., Woo, J.-H. (2014) Assessment of transboundary ozone contribution toward South Korea using multiple source-receptor modeling techniques, Atmospheric Environment, 92, 118-129. 

  13. Cohan, D.S., Hakami, A., Hu, Y., Russell, A.G. (2005) Nonlinear Response of Ozone to Emissions: Source Apportionment and Sensitivity Analysis, Environmental Science and Technology, 39(17), 6739-6748. 

  14. Cohan, D.S., Hu, Y., Russell, A.G. (2006) Dependence of ozone sensitivity analysis on grid resolution, Atmospheric Environment, 40(1), 126-135. 

  15. Draxler, R.R., Hess, G.D. (2004) Description of the HYSPLIT 4 Modeling System, NOAA Technical Memorandum ERL ARL-224, https://www.arl.noaa.gov/documents/reports/arl-224.pdf (accessed on Oct. 22, 2018). 

  16. Dunker, A.M., Yarwood, G., Ortmann, J.P., Wilson, G.M. (2002) Comparison of source apportionment and source sensitivity of ozone in a three-dimensional air quality model, Environmental science and technology, 36(13), 2953-2964. 

  17. Emery, C., Tai, E., Yarwood, G. (2001) Enhanced meteorological modeling and performance evaluation for two Texas ozone episodes. Prepared for the Texas Natural Resource Conservation Commission, by ENVIRON International Corporation, 161, https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/mm/EnhancedMetModelingAnd-PerformanceEvaluation.pdf (accessed on Oct. 22, 2018). 

  18. Emery, C., Liu, Z., Russell, A.G., Odman, M.T., Yarwood, G., Kumar, N. (2017) Recommendations on statistics and benchmarks to assess photochemical model performance, Journal of the Air and Waste Management Association, 67(5), 582-598. 

  19. Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C. (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmospheric Chemistry and Physics, 6(1), 107-173. 

  20. Ha, H., Lee, S.-D., Lee, J.-K., Park, C.-O., Mun, T.-R. (2006) On Characteristics of Surface Ozone Concentration and Temporal. Spatial Distribution in Kwangyang-Bay, Journal of Korean Society for Atmospheric Environment, 22(5), 642-652. (in Korean with English abstract) 

  21. Hakami, A., Odman, M.T., Russell, A.G. (2003) High-order, direct sensitivity analysis of multidimensional air quality models, Environmental Science and Technology, 37(11), 2442-2452. 

  22. Hong, S.-C., Mun, G.-J., Lee, J.-B., Song, C.-G., Kim, S.-Y., Kim, S.-G. (2008) Analysis of Seasonal Characteristics of Long-range Transboundary Air Pollutants in Northeast Asia, Proceeding of the 46st Meeting of KOSAE, 657-659. (in Korean) 

  23. Hong, S.-C., Lee, J.-B., Choi, J.Y., Moon, K.J., Lee, H.J., Hong, Y.D., Lee, S.J., Song, C.K. (2012) The Effect of the Chemical Lateral Boundary Conditions on CMAQ Simulations of Tropospheric Ozone for East Asia, Journal of Korean Society for Atmospheric Environment, 28(5), 581-594. (in Korean with English abstract) 

  24. Itahashi, S., Uno, I., Kim, S. (2012) Application of HDDM sensitivity analysis technique for the source-receptor analysis over East Asia, Journal of Japan Society for Atmospheric Environment, 47(5), 205-216. 

  25. Itahashi, S., Uno, I., Kim, S. (2013) Seasonal source contributions of tropospheric ozone over East Asia based on CMAQ-HDDM, Atmospheric environment, 70, 204-217. 

  26. Itahashi, S., Hayami, H., Uno, I. (2015) Comprehensive study of emission source contributions for tropospheric ozone formation over East Asia, Journal of Geophysical Research: Atmospheres, 120(1), 331-358. 

  27. Jaffe, D., McKendry, I., Anderson, T., Price, H. (2003) Six 'new' episodes of trans-Pacific transport of air pollutants, Atmospheric Environment, 37(3), 391-404. 

  28. Jimenez, P.A., Dudhia, J. (2013) On the ability of the WRF model to reproduce the surface wind direction over complex terrain, Journal of Applied Meteorology and Climatology, 52(7), 1610-1617. 

  29. Kim, B.-U., You, S., Kim, H.C., Lim, Y., Suh, I., Lee, J.-B., Woo, J.-H., Kim, S. (2017a) Influence of Different Foreign Emissions Inventories on Simulated, Ground-Level Ozone in the Seoul Metropolitan Area during May 2014, Aerosol and Air Quality Research, 17(12), 3179-3193. 

  30. Kim, E., Kim, B.-U., Kim, H.C. (2017b) The Variability of Ozone Sensitivity to Anthropogenic Emissions with Biogenic Emissions Modeled by MEGAN and BEIS3, Atmosphere, 8(10), 187. 

  31. Kim, S., Moon, N., Byun, D. (2008) Korea emissions inventory processing using the US EPA's SMOKE system, Asian Journal of Atmospheric Environment, 2(1), 34-46. 

  32. Kim, S., Lee, C.-B. (2011) Estimating influence of local and neighborhood emissions on ozone concentrations over the Kwang-Yang bay based on air quality simulations for a 2010 June episode, Journal of Korean Society for Atmospheric Environment, 27(5), 504-522. (in Korean with English abstract) 

  33. Kim, S. (2011) Estimating Ozone Sensitivity Coefficients to $NO_x$ and VOC Emissions Using BFM and HDDM for A 2007 June Episode, Journal of the Environmental Sciences, 20(11), 1465-1481. (in Korean with English abstract) 

  34. Kim, S., Bae, C.H., Kim, E.H., You, S.H., Bae, M.A., Lee, J.B., Seo, I.S., Jae, L.Y., Kim. B.-U., Kim, H.C., Woo, J.H. (2017c) Domestic Ozone Sensitivity to Chinese Emissions Inventories: A Comparison between MICS-Asia 2010 and INTEX-B 2006, Journal of Korean Society for Atmospheric Environment, 33(5), 480-496. (in Korean with English abstract) 

  35. Koo, B., Wilson, G.M., Morris, R.E., Dunker, A.M., Yarwood, G. (2009) Comparison of source apportionment and sensitivity analysis in a particulate matter air quality model, Environmental Science and Technology, 43(17), 6669-6675. 

  36. Lam, K.S., Wang, T.J., Chan, L.Y., Wang, T., Harris, J. (2001) Flow patterns influencing the seasonal behavior of surface ozone and carbon nomoxide at a coastal site near Hong Kong, Atmospheric Environment, 35(18), 3121-3135. 

  37. Liu, N., Yu, Y., He, J., Zhao, S. (2013) Integrated modeling of urban-scale pollutant transport: application in a semi-arid urban valley, Northwestern China, Atmospheric Pollution Research, 4(3), 306-314. 

  38. Liu, X.-H., Zhang, Y., Xing, J., Zhang, Q., Wang, K., Streets, D.G., Jang, C., Wang, W.-X., Hao, J.-M. (2010) Understanding of regional air pollution over China using CMAQ, part II. Process analysis and sensitivity of ozone and particulate matter to precursor emissions, Atmospheric Environment, 44(30), 3719-3727. 

  39. Ministry of Environment (MOE) (2012) A Study on Improvement and Expansion of Urban Scale $PM_{2.5}$ Forecasting System. (in Korean) 

  40. Ministry of Environment (MOE) (2013) The 2nd stage of air quality management plan over the Seoul Metropolitan Area. (in Korean) 

  41. National Institute of Environmental Research (NIER) (2004-2017) Annual Report of Ambient Air Quality in Korea (in Korean), https://www.airkorea.or.kr/detail-ViewDown (accessed on Oct. 22, 2018). 

  42. National Institute of Environmental Research (NIER) (2011) Investigation to analysis of high ozone concentration (III). (in Korean) 

  43. National Institute of Environmental Research (NIER) (2015) Clean air policy support system, http://airemiss.nier.go.kr/main.jsp/ (accessed on Jan. 12, 2018). (in Korean) 

  44. National Oceanic and Atmospheric Administration (NOAA) (2015) Introduction to the HYSPLIT Trajectory Model, WMO GURME Regional Training Workshop on urban air quality modelling for ASEAN Countries, Petaling Jaya 

  45. Oltmans, S.J., Levy, H. (1994) Surface ozone measurements from a global network, Atmospheric Environment, 28(1), 9-24. 

  46. Oh, I.B., Kim, Y.K., Hwang, M.K., Kim, C.H., Kim, S., Song, S.K. (2010) Elevated ozone layers over the Seoul Metropolitan Region in Korea: Evidence for long-range ozone transport from eastern China and its contribution to surface concentrations, Journal of Applied Meteorology and Climatology, 49(2), 203-220. 

  47. Ran, L., Zhao, C.S., Xu, W.Y., Lu, X.Q., Han, M., Lin, W.L., Liu, P. F. (2011) VOC reactivity and its effect on ozone production during the HaChi summer campaign, Atmospheric Chemistry and Physics, 11(10), 4657-4667. 

  48. Riuttanen, L., Hulkkonen, M., Maso, M.D., Junninen, H., Kulmala, M. (2013) Trajectory analysis of atmospheric transport of fine particles, $SO_2$ , $NO_x$ and $O_3$ to the SMEAR II station in Finland in 1996-2008, Atmospheric Chemistry and Physics, 13(4), 2153-2164. 

  49. Seinfeld, J.H., S.N. Pandis (1998) Atmospheric chemistry and physics from air pollution to climate change, Wiley, New York. 

  50. Skamarock, W.C., Klemp, J.B. (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, Journal of Computational Physics, 227(7), 3465-3485. 

  51. Sogacheva, L., Hamed, A., Facchini, M.C., Kulmala, M., Laaksonen, A. (2007) Relation of air mass history to nucleation events in Po Valley, Italy, using back trajectories analysis, Atmospheric Chemistry and Physics, 7(3), 839-853. 

  52. Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M.D., Ngan, F. (2015a) NOAA's HYSPLIT atmospheric transport and dispersion modeling system, Bulletin of the American Meteorological Society, 96(12), 2059-2077. 

  53. Stein, A.F., Ngan, F., Draxler, R.R., Chai, T. (2015b) Potential use of transport and dispersion model ensembles for forecasting applications, Weather and Forecasting, 30(3), 639-655. 

  54. U.S. Environmental Protection Agency (US EPA) (2007) Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, $PM_{2.5}$ , and Regional Haze, https://www3.epa.gov/scram001/guidance/guide/final-03-pm-rhguidance.pdf (accessed on Oct. 22, 2018). 

  55. U.S. Environmental Protection Agency (US EPA) (2013) Integrated Science Assessment for Ozone and Related Photochemical Oxidants, EPA 600/R-10, http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id511347 (accessed on Oct. 22, 2018). 

  56. Wang, S.X., Zhao, B., Cai, S.Y., Klimont, Z., Nielsen, C.P., Morikawa, T., Woo, J.H., Kim, Y., Fu, X., Xu, J.Y., Hao, J.M., He, K.B. (2014) Emission trends and mitigation options for air pollutants in East Asia, Atmospheric Chemistry and Physics, 14(13), 6571- 6603. 

  57. Xing, J., Wang, S.X., Jang, C., Zhu, Y., Hao, J.M. (2011) Nonlinear response of ozone to precursor emission changes in China: a modeling study using response surface methodology, Atmospheric Chemistry and Physics, 11(10), 5027-5044. 

  58. Yarwood, G., Morris, R.E., Yocke, M.A., Hogo, H., Chico, T. (1996) Development of a Methodology for Source Apportionment of Ozone Concentration Estimates from a Photochemical Grid Model, Presented at the 89th AWMA Annual Meeting, Nashville TN, June 23-28. 

  59. Yarwood, G., Morris, R.E., Wilson, G.M. (2004) Particulate Matter Source Apportionment Technology (PSAT) in the CAMx Photochemical Grid Model, Proceedings of the 27th NATO/CCMS International Technical Meeting on Air Pollution Modeling and Application, Springer Verlag, Heidelberg. 

  60. Zhang, Q., Streets, D.G., Carmichael, G.R., He, K.B., Huo, H., Kannari, A., Klimont, Z., Park, I.S., Reddy, S., Fu, J.S. (2009) Asian emissions in 2006 for the NASA INTEXB mission, Atmospheric Chemistry and Physics, 9(14), 5131-5153. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로