$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

딥러닝 기반 객체 분류 및 검출 기술 분석 및 동향
Technology Trends and Analysis of Deep Learning Based Object Classification and Detection 원문보기

전자통신동향분석 = Electronics and telecommunications trends, v.33 no.4, 2018년, pp.33 - 42  

이승재 (인포콘텐츠기술연구그룹) ,  이근동 (인포콘텐츠기술연구그룹) ,  이수웅 (인포콘텐츠기술연구그룹) ,  고종국 (인포콘텐츠기술연구그룹) ,  유원영 (인포콘텐츠기술연구그룹)

Abstract AI-Helper 아이콘AI-Helper

Object classification and detection are fundamental technologies in computer vision and its applications. Recently, a deep-learning based approach has shown significant improvement in terms of object classification and detection. This report reviews the progress of deep-learning based object classif...

참고문헌 (65)

  1. M. Everingham et al., "The Pascal Visual Object Classes (VOC) Challenge - A Retrospective," IJCV, vol. 111, no. 1, 2014, pp. 98-136. 

  2. O. Russakovsky et al., "ImageNet Large Scale Visual Recognition Challenge," IJCV, vol. 115, no. 3, 2015, pp. 211-252. 

  3. Standford University and Princeton University, "ImageNet," Accessed 2018. http://image-net.org 

  4. Standford University, "ILSVRC" Accessed 2018. http://image-net.org/challenges/LSVRC/ 

  5. Princeton University, "WordNet," Accessed 2018. https://wordnet.princeton.edu/ 

  6. M. Everingham et al., "PASCAL Visual Object Classes Challenge (VOC) 2005-2012," Accessed 2018. http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html 

  7. Kaggle, "ImageNet Challenge (Kaggle)," Accessed 2018. https://www.kaggle.com/image-net 

  8. K. Yu, T. Zhang, and Y. Gong, "Nonlinear Learning Using Local Coordinate Coding," in NIPS, Vancouver, Canada, Dec. 2009, pp. 2223-2231. 

  9. F. Perronnin and C. Dance, "Fisher Kernels on Visual Vocabularies for Image Categorization," CVPR, Minneapolis, MN, USA, June 17-22, 2007, pp. 1-8. 

  10. M.A. Hearst et al., "Support Vector Machines," IEEE Intell. Syst. Their Applicat., vol. 13, no. 4, 1998, pp. 18-28. 

  11. F. Perronnin et al., "Large-Scale Image Retrieval with Compressed Fisher Vectors," CVPR, Sna Francisco, CA, USA, June 13-18, 2010, pp. 3384-3391. 

  12. J. Sanchez and F. Perronnin, "High-Dimensional Signature Compression for large-Scale Image Classification," CVPR, Colorado Springs, CO, USA, June 20-25, 2011, pp. 1665-1672. 

  13. K.E. Van de Sande et al., "Segmentation as Selective Search for Object Recognition," ICCV, Barcelona, Spain, Nov. 6-13, 2011, pp. 1879-1886. 

  14. J. Sivic and A. Zisserman, "Video Google: A Text Retrieval Approach to Object Matching in Videos," ICCV, Nice, France, Oct. 14-17, 2003, pp. 1470-1478. 

  15. D.G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," IJCV, vol. 60, no. 2, 2004, pp. 91-110. 

  16. A. Krizhevsky, I. Sutskever, and G.E. Hinton, "Imagenet Classification with deep Convolutional Neural Networks," NIPS, Lake Tahoe, CA, USA, Dec. 3-8, 2012, pp. 1097-1105. 

  17. Clarifai, "Clarifai Website," Accessed 2018. https://clarifai.com/ 

  18. M.D. Zeiler, and R. Fergus, "Visualizing and Understanding Convolutional Networks," ECCV, Zurich, Swiss, Sept. 6-12, 2014, pp. 818-833. 

  19. P. Sermanet et al., "Overfeat: Integrated Recognition, Localization and Detection Using Convolutional Networks," arXiv preprint arXiv: 1312.6229, 2013. 

  20. M. Lin, Q. Chen, and S. Yan, "Network in Network," arXiv preprint arXiv: 1312.4400, 2013. 

  21. K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv preprint arXiv:1409.1556, 2014. 

  22. C. Szegedy et al., "Going Deeper with Convolutions", CVPR, Boston, MA, USA, June 8-10, 2015. 

  23. C. Szegedy et al., "Rethinking the Inception Architecture for Computer Vision," CVPR, Las Vegas, NV, USA, June 26-July 1, 2016, pp. 2818-2826 

  24. C. Szegedy et al., "Inception-v4, Inception-Resnet and the Impact of Residual Connections on Learning," AAAI, San Francisco, CA, USA, Feb. 4-9, 2017, pp. 4278-4284. 

  25. K. He et al., "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition," IEEE Trans. Pattern Anal Mach. Intell., vol. 37, no. 9, 2015, pp. 1904-1916. 

  26. R. Girshick et al., "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation," CVPR, Columbus, OH, USA, June 24-27, 2014, pp. 580-587. 

  27. R. Girshick, "Fast R-CNN," CVPR, Boston, MA, USA, June 8-10, 2015. pp. 1440-1448. 

  28. S. Ren et al., "Faster R-CNN: Towards real-Time Object Detection with Region Proposal Networks," NIPS, Montreal, Canada, Dec. 7-12, 2015, pp. 91-99. 

  29. ICCV 2015, "ImageNet and MS COCO Visual Recognition Challenges Joint Workshop," Accessed 2018. http://imagenet.org/challenges/ilsvrc+mscoco2015 

  30. COCO, "COCO (Common Objects in Context," Accessed 2018. http://cocodataset.org/ 

  31. K. He et al., "Identity Mappings in Deep Residual Networks," ECCV, Amsterdam, Netherlands, Oct. 8-16, 2016, pp. 630-645. 

  32. The Third Research Institute of the Ministry of Public Security, P.R. China, "TRIMPS," Accessed 2018. http://hr.trimps.ac.cn/ 

  33. SenseTime, "SenseTime," Accessed 2018. https://www.sensetime.com/ 

  34. Hikvision, "Hikvision," Accessed 2018. http://en.hikrobotics.com/welcome.htm 

  35. Y. Li, et al., "Fully Convolutional Instance-Aware Semantic Segmentation," CVPR, Honolulu, HI, USA, July 21-26, 2017, pp. 4438-4446. 

  36. S. Xie et al., "Aggregated Residual Transformations for Deep Neural Networks," CVPR, Honolulu, HI, USA, July 21-26, 2017, pp. 5987-5995. 

  37. Cityscapes Team, "Cityscapes Dataset," Accessed 2018. https://www.cityscapes-dataset.com/ 

  38. Google, "Youtube8M Dataset," Accessed 2018. https://research.google.com/youtube8m/ 

  39. Google, "Open Images Dataset v4," Accessed 2018. https://storage.googleapis.com/openimages/web/index.html 

  40. Qihoo 360, "About Qihoo 360," Accessed 2018. https://www.360totalsecurity.com/en/about/ 

  41. J. Hu, L. Shen, and G. Sun, "Squeeze-and-Excitation Networks," arXiv preprint arXiv:1709.01507, 2017. 

  42. Y. Chen et al., "Dual Path Networks," NIPS, Long beach, CA, USA, Dec. 4-9, 2017, pp. 4470-4478. 

  43. G. Huang et al., "Densely Connected Convolutional Networks," CVPR, Honolulu, HI, USA, July 21-26, 2017, pp. 4700-4708. 

  44. X. Zhang et al., "PolyNet: A Pursuit of Structural Diversity in Very Deep Networks," CVPR, Honolulu, HI, USA, July 21-26, 2017, pp. 718-726. 

  45. M. Denil et al., "Predicting Parameters in Deep Learning," NIPS, Lake Tehoe, CA, USA, Dec. 5-10, 2013. 

  46. M. Jaderberg, A. Vedaldi, and A. Zis-serman, "Speeding up Convolutional Neural Networks with Low Rank Expansions," BMVC, Nottingham, UK, 2014. 

  47. E. Denton et al., "Exploiting Linear Structure within convolutional Networks for Efficient Evaluation," NIPS, Montreal, Canada, Dec. 8-13, 2014. 

  48. V. Lebedev et al., "Speeding-up Convolutional Neural Networks Using Fine-Tuned CP-Decomposition," ICLR, San Diego, CA, USA, May 7-9, 2015. 

  49. Y. Gong, L. Liu, and L. Bourdev, "Compressing Deep Convolutional Networks Using Vector Quantization," arXiv preprint arXiv:1412.6115v1, Dec. 2014. 

  50. S. Hang et al., "Learning Both Weight and CONNEctions for Efficient Neural Networks," NIPS, Montreal, Canada, Dec. 7-12, 2015. 

  51. A.G. Howard et al., "Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications," arXiv preprint arXiv:1704.04861, 2017. 

  52. M. Sandler et al., "Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation," arXiv preprint arXiv:1801.04381, 2018. 

  53. X. Zhang et al., "Shufflenet: An Extremely Efficient Convolutional Neural Network for Mobile Devices," arXiv preprint arXiv:1707.01083, 2017. 

  54. F.N. Iandola et al., "SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and < 0.5 MB Model Size," arXiv preprint arXiv:1602.07360, 2016. 

  55. IEEE Rebooting Computing, "Low-Power Image Recognition Challenge," Accessed 2018. https://rebootingcomputing.ieee.org/lpirc 

  56. Google, "Tensorflow Lite," Accessed 2018. https://www.tensorflow.org/mobile/tflite/ 

  57. Facebook, "Caffe2," Accessed 2018. https://caffe2.ai/ 

  58. Apple, "CoreML," Accessed 2018. https://developer.apple.com/documentation/coreml 

  59. Google, "Google Cloud AI," Accessed 2018. https://cloud.google.com/products/machine-learning/ 

  60. Amazon, "AWS 기반 기계 학습," Accessed 2018. https://aws.amazon.com/ko/machine-learning/ 

  61. Microsoft, "Microsoft AI," Accessed 2018. https://www.microsoft.com/en-us/ai/ 

  62. Nokia, "Nokia Smart City," Accessed 2018. https://networks.nokia.com/smart-city 

  63. Amazon, "Amazon Go," Accessed 2018. https://www.amazon.com/b?ieUTF8&node16008589011 

  64. C. Lu et al., "Visual Relationship Detection with Language Priors," ECCV, Amsterdam, Netherlands, Oct. 8-16, 2016, pp. 852-869. 

  65. A. Santoro et al., "A Simple Neural Network Module for Relational Reasoning," arXiv preprint arXiv:1706.01427, 2017. 

LOADING...

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로