$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 수학교육에서 계산적 사고(Computational Thinking)의 의미 및 연구 동향 탐색
A study on investigation about the meaning and the research trend of computational thinking(CT) in mathematics education 원문보기

Journal of the Korean Society of Mathematical Education. Series A. The Mathematical Education, v.58 no.4, 2019년, pp.483 - 505  

신동조 (단국대학교) ,  고상숙 (단국대학교)

초록

세계적으로 계산적 사고를 학교 교육과정에 통합하려는 움직임이 일고 있고, 수학교과는 이러한 움직임의 핵심이 되고 있다. 본 연구에서는 Jeannette Wing의 주장과 선행연구를 바탕으로 계산적 사고와 수학적 사고 간의 관계를 분석하였고 계산적 사고를 수학교과에 통합한 국내외 연구를 종합적으로 검토하였다.

Abstract AI-Helper 아이콘AI-Helper

Across the world, there is a movement to incorporate computational thinking(CT) into school curricula, and math is at the heart of this movement. This paper reviewed the meanings of CT based on the point of view of Jeanette Wing, and the trend of domestic and international studies that incorporated ...

주제어

표/그림 (9)

질의응답

핵심어 질문 논문에서 추출한 답변
Wing이 주장하는 CT는 무엇인가? Wing의 자동화는 추상화된 개념들을 해석할 수 있도록 컴퓨터 등을 통해 작동시키는 것을 의미한다. 종합하면,Wing의 CT는 효과적인 문제해결을 위해 문제의 핵심을 추상화하고 이를 자동화하여 표현하는 데 필요한 사고과정을 의미한다.
수학 교과에 CT 통합이 미치는 긍정적 영향은? 마지막으로, 수학·과학 교과에 CT 통합은 전통적으로 컴퓨터 관련 분야에서 배제되었던 여성과 소외계층에게 자연스럽게 교육의 기회를 제공할 수 있다. 요약하면, 수학 교과에 CT 통합은 직업적 역량 강화, 수학적 이해 및 CT 향상, 교육의 공정성(equity)에 기여할 수 있다(Weintrop et al., 2016).
수학교육에서 CT 통합의 필요성이 지속적으로 제기되는 이유는? 수학교육에서도 CT 통합의 필요성이 지속적으로 제기되고 있다(Chang,2017; Shim & Shim, 2018). 이는 CT의 특성이 수학적 사고(mathematical thinking: MT)의 특성과 비슷한 맥락에서 정의되고 있기 때문이다(diSessa, 2018; National Research Council [NRC], 2010; Sneider, Stephenson,Schafer, & Flick, 2014; Wing, 2006; 2008). 나아가, 4차산업혁명 시대 컴퓨팅을 이용한 문제해결능력 함양은 수학교육의 중요한 역할 중 하나로 부각되고 있다(Kim,Seo, & Cho, 2018; Shim & Shim, 2018)
질의응답 정보가 도움이 되었나요?

참고문헌 (81)

  1. Ananiadou, K., & Claro, M. (2009). 21st century skills and competences for new millennium learners in OECD countries. OECD Education Working Papers, 41, OECD Publishing. 

  2. Association for Computing Machinery (2014). New report presents recommendations and initiatives to address CS education challenges. Retrieved May 30, 2019 from https://cacm.acm.org/news/172705-new-report-presents-recommendations-and-initiatives-to-address-cs-education-challenges/fulltext 

  3. Balanskat, A., & Engelhardt, K. (2015). Computing our future: Computer programming and coding priorities, school curricula and initiatives across Europe. Brussels, Belgium: European Schoolnet. Retrieved May 30, 2019 from http://tinyurl.com/zagj3wj 

  4. Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning & Leading with Technology, 38(6), 20-23. 

  5. Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is the role of the computer science education community?. ACM Inroads, 2(1), 48-54. 

  6. Beggrow, E. P., Ha, M., Nehm, R. H., Pearl, D., & Boone, W. J. (2014). Assessing scientific practices using machine-learning methods: How closely do they match clinical interview performance?. Journal of Science education and Technology, 23(1), 160-182. 

  7. Berkaliev, Z., Devi, S., Fasshauer, G. E., Hickernell, F. J., Kartal, O., Li, X., ... & Zawojewski, J. S. (2014). Initiating a programmatic assessment report. PRIMUS, 24(5), 403-420. 

  8. Berland, M., & Wilensky, U. (2015). Comparing virtual and physical robotics environments for supporting complex systems and computational thinking. Journal of Science Education and Technology, 24(5), 628-647. 

  9. Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., & Rumble, M. (2012). Defining twenty-first century skills. In P. Griffin, B. McGaw, & E. Care (Eds.), Assessment and teaching of 21st century skills (pp. 17-66). Netherlands: Springer. 

  10. Bower, M., & Falkner, K. (2015, January). Computational thinking, the notional machine, pre-service teachers, and research opportunities. Proceedings of the 17th Australasian Computing Education Conference (pp. 37-46). Sydney, Australia. Retrieved May 30, 2019 from https://pdfs.semanticscholar.org/c2df/f4fdd833c44015fedff1e9ae480740894a7b.pdf 

  11. Brennan, K., & Resnick, M. (2012). Using artifact-based interviews to study the development of computational thinking in interactive media design. Paper presented at annual American Educational Research Association meeting. Vancouver, Canada. 

  12. Burton, L. (1984). Mathematical thinking: The struggle for meaning. Journal for Research in Mathematics Education, 15(1), 35-49. 

  13. Calao, L. A., Moreno-Leon, J., Correa, H. E., & Robles, G. (2015). Developing mathematical thinking with scratch. In Design for teaching and learning in a networked world (pp. 17-27). Springer International Publishing. 

  14. Cetin, I., & Dubinsky, E. (2017). Reflective abstraction in computational thinking. The Journal of Mathematical Behavior, 47, 70-80. 

  15. Chang, K. (2017). A feasibility study on integrating computational thinking into school mathematics. School Mathematics, 19(3), 553-570. 

  16. Choi-Koh, S. (2003). The effective use of a technology tool for students' mathematical exploration. Mathematics Education, 42(5), 647-672. 

  17. Choi-Koh, S. (2005). Push the Excel if you want to do math. Seoul: Kyungmoonsa. 

  18. Choi-Koh, S. (2018). Problem solving competence. Korean society of mathematical education yearbook 2017: Mathematical Competences and Capabilities in Korea Math Education(pp. 25-51). Seoul: Kyungmoonsa. 

  19. Choi-Koh, S., Ko, H., Gu, N., Kim, N., Kim, R., Kim, H.,..., Han, S. (2015). Journal of Korea society educational studies in mathematics yearbook 2015: Technological tools in mathematics education. Seoul: Kyungmoonsa. 

  20. Computer Science Teachers Association. (2017). CSTA K-12 Computer Science Standards, Revised 2017. Computer Science Teachers Association. Retrieved May 30, 2019 from http://www.csteachers.org/standards. 

  21. Costa, E. J. F., Campos, L. M. R. S., & Guerrero, D. D. S. (2017, October). Computational thinking in mathematics education: A joint approach to encourage problem-solving ability. In 2017 IEEE Frontiers in Education Conference (FIE). IEEE, Indianapolis, IN. 

  22. DeJarnette, A. F. (2018). Students' conceptions of sine and cosine functions when representing periodic motion in a visual programming environment. Journal for Research in Mathematics Education, 49(4), 390-423. 

  23. diSessa, A. A. (2000). Changing minds: Computers, learning, and literacy. Cambridge, MA: MIT Press. 

  24. diSessa, A. A. (2018). Computational literacy and "the big picture" concerning computers in mathematics education. Mathematical Thinking and Learning, 20(1), 3-31. 

  25. Falloon, G. (2016). An analysis of young students' thinking when completing basic coding tasks using Scratch Jnr. On the iPad. Journal of Computer Assisted Learning, 32(6), 576-593. 

  26. Gadanidis, G., Cendros, R., Floyd, L., & Namukasa, I. (2017). Computational thinking in mathematics teacher education. Contemporary Issues in Technology and Teacher Education, 17(4), 458-477. 

  27. Gadanidis, G., Clements, E., & Yiu, C. (2018). Group theory, computational thinking, and young mathematicians. Mathematical Thinking and Learning, 20(1), 32-53. 

  28. Garcia-Penalvo, F. J., & Mendes, J. A. (2018). Exploring the computational thinking effects in pre-university education. Computers in Human Behavior, 80, 407-411 

  29. Gouws, L., Bradshaw, K., & Wentworth, P. (2013). Computational thinking in educational activities. In J. Carter, I. Utting & A. Clear (Eds.), The proceedings of the 18th Conference on Innovation and Technology in Computer Science Education (pp. 10-15). Canterbury: ACM. 

  30. Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational Researcher, 42(1), 38-43. 

  31. Han, S. (2017). Play-based SW education teaching-learning strategy to improve computational thinking. Journal of Korea Association of Information Education, 21(6), 657-664. 

  32. Hwang, Z., & Hwang, S. (2017). An analysis of research trends software education for elementary school: Focusing on domestic articles. Journal of Korea Association of Information Education, 21(5), 509-525. 

  33. Jang, M. (2017). A study on technological pedagogical content knowledge of middle school mathematics teachers. Doctoral Dissertation, Chonnam National University. 

  34. Jun, Y., & Yoon, J. (2016). Case exploration of a gifted student's spontaneous and creative project activities using NetLogo in a math-information combined class. The Journal of Science Education for the Gifted, 8, 145-166. 

  35. Kafai, Y., & Burke, Q. (2013). Computer programming goes back to school. Phi Delta Kappan, 95(1), 61-65. 

  36. Kang, T., Lee, S., & Choi-Koh, S. (2017). Development and implementation of the program for the free learning semester focused on career exploration. Mathematics Education, 56(2), 177-191. 

  37. Ke, F. (2014). An implementation of design-based learning through creating educational computer games: A case study on mathematics learning during design and computing. Computers & Education, 73, 26-39. 

  38. Kim, C. (2013). Design and application of math class with robot. Journal of Korea Association of Information Education, 17(1), 43-52. 

  39. Kim, D., Bae, S., Kim, W., Lee, D., & Choi, S. (2014). Trends of mathematics education research and mixed methods - Focusing on domestic mathematics education journals for the last 10 years. Communications of Mathematical Education, 23(3), 303-320. 

  40. Kim, H. (2015). A turtle microworld and computing thinking. Korea society educational studies in mathematics yearbook 2015: Technological tools in mathematics education (pp. 355-367). Seoul: Kyungmoonsa. 

  41. Kim, N., Seo, Y., & Cho, H. (2018). Coding mathematics contents and environment design - Focusing on mathematization and computational thinking. Journal of Learner-Centered Curriculum and Instruction, 18, 647-673. 

  42. Kim, S. U., & Kim, S. H. (2019). The effect of a robot-based education program on young children's logic-mathematical knowledge and creative problem-solving. The Journal of Future Early Childhood Education, 26(1), 209-229. 

  43. Lee, Y. (2018). Domestic research trends analysis of software education. The Journal of Educational Information and Media, 24(2), 277-301. 

  44. Lee, S., & Choi-Koh, S. (2018). The effects of the mathematical program, $DM^3$ based on coding instruction using Python. The Journal of Educational Research in Mathematics, 28(4), 479-499. 

  45. Lee, D., & Jung, J. (2019). The effects of middle school mathematical statistics area and Python programming STEAM instruction on problem solving ability and curriculum interest. Journal of the Korea Academia-Industrial Cooperation Society, 20(4), 336-344. 

  46. Lee, Y., & Sung, H. (2017). Influence of program using the coding robot "Bee-Bot" on children's mathematical problem solving ability. Children's Media Study, 16(3), 261-281 

  47. Lew, H., & Shin, D. (1998). Mathematics education and computer. Seoul: Kyungmoonsa. 

  48. Lockwood, E., DeJarnette, A. F., & Thomas, M. (2019). Computing as a mathematical disciplinary practice. The Journal of Mathematical Behavior, Advance online publication. https://doi.org/10.1016/j.jmathb.2019.01.004 

  49. Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12?. Computers in Human Behavior, 41, 51-61. 

  50. Ministry of Education (1992). The 6th reformed middle school curriculum. Seoul: The author. 

  51. Ministry of Education (2015a). 2015 reformed mathematics curriculum 2015-74 [Supplementary Book 8]. Retrieved July 21, 2019 from http://www.moe.go.kr 

  52. Ministry of Education (2015b). The plans for educating students for the SW-oriented society. Retrieved July 21, 2019 from http://www.moe.go.kr 

  53. Ministry of Education (2016). The press materials about coding education in the elementary & secondary School. Retrieved July 21, 2019 from http://www.moe.go.kr 

  54. National Research Council. (2010). Report of a workshop on the scope and nature of computational thinking. Washington, DC: National Academies Press. 

  55. Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books. 

  56. Park, J., & Kang, M. (2015). Structural relationships among learners' characters, learning flow, and thinking ability in a Scratch programming course for elementary school students. The Journal of Elementary Education, 28(4), 145-170. 

  57. Park, J., & Kim, C. (2010). The effects of robot based mathematics learning on learners' attitude and problem solving skills. The Journal of Korea Association of Computer Education, 13(5), 71-80. 

  58. Park, M., Kim, D., Kim, J., Kim, H., Lee, B., Cho, Y., & Hong, J. (2018). An analysis on the effects of a tangible coding education program. The Journal of Korea Elementary Education, 29(4), 23-49. 

  59. Park, M., Kim, J., & Kim, T. (2014). The effect of the RME-based algorithmic learning on elementary students' problem solving ability for improving computational thinking. Korean Journal of Teacher Education, 30(4), 179-193. 

  60. Pei, C., Weintrop, D., & Wilensky, U. (2018). Cultivating computational thinking practices and mathematical habits of mind in Lattice Land. Mathematical Thinking and Learning, 20(1), 75-89. 

  61. Perez, A. (2018). A Framework for computational thinking dispositions in mathematics education. Journal for Research in Mathematics Education, 49(4), 424-461. 

  62. Rim, H., Choi, I., & Noh, S. (2014). A study on the application of robotic programming to promote logical and critical thinking in mathematics education. Mathematics Education, 53(3), 413-434. 

  63. Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K-12 science education using agent-based computation: A theoretical framework. Education and Information Technologies, 18(2), 351-380. 

  64. Shim, K., & Shim, S. (2018). Development of teaching method of mathematics subject with python coding - Focusing on the content of 'prime decomposition' in the middle school mathematics subject of 2015 revised curriculum. Educational Study, 73, 43-64. 

  65. Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142-158. 

  66. Sneider, C., Stephenson, C., Schafer, B., & Flick, L. (2014). Computational thinking in high school science classrooms. The Science Teacher, 81(5), 53. 

  67. Son, H. (2011). A study on students' conjecturing of geometric properties in dynamic geometry environments using GSP. School Mathematics, 13(1), 107-125. 

  68. Song, J. (2017). Effects of learning through Scratch-based game programming on students' interest in and perceived value of mathematics curriculum. Journal of Korea Association of Information Education, 21(2), 199-208. 

  69. Stanic, G. M., & Kilpatrick, J. (1989). Historical perspectives on problem solving in the mathematical curriculum. In R. I. Charles, & E. A. Silver(Eds.) The Teaching and Assessing of Mathematical Problem Solving(pp. 1-22). Hillsdalc, NJ: Erlbaum 

  70. Sung, W., Ahn, J., & Black, J. B. (2017). Introducing computational thinking to young learners: Practicing computational perspectives through embodiment in mathematics education. Technology, Knowledge and Learning, 22(3), 443-463. 

  71. Taylor, M., Harlow, A., & Forret, M. (2010). Using a computer programming environment and an interactive whiteboard to investigate some mathematical thinking. Procedia-Social and Behavioral Sciences, 8, 561-570. 

  72. Trouche, L. (2004). Managing the complexity of human/machine interaction in a computerized learning environments: Guiding students' command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281-307. 

  73. Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127-147. 

  74. White House (2016). FACT SHEET: President Obama announces computer science for all initiative. Retrieved May. 30, 2019 from https://obamawhitehouse.archives.gov/the-press-office/2016/01/30/fact-sheet-president-obama-announces-computer-science-all-initiative-0 

  75. Williams, S. R., & Leatham, K. R. (2017). Journal quality in mathematics education. Journal for Research in Mathematics Education, 48(4), 369-396. 

  76. Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. 

  77. Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366, 3717-3725. 

  78. Wing, J. M. (2014). Computational thinking benefits society. 40th Anniversary Blog of Social Issues in Computing, 2014. Retrieved May. 30, 2019 from http://socialissues.cs.toronto.edu/index.html%3Fp279.html 

  79. Wing, J. M. (2017). Computational thinking's influence on research and education for all. Italian Journal of Educational Technology, 25(2), 7-14. 

  80. Wing, J. M., & Stanzione, D. (2016). Progress in computational thinking, and expanding the HPC community. Communications of the ACM, 59(7), 10-11. 

  81. Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in elementary and secondary teacher education. ACM Transactions on Computing Education, 14(1), 1-16. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로