$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

석유화학공정 폐촉매에 함유된 희유금속의 유기산 침출
Leaching of Rare Metals from Spent Petroleum Catalysts by Organic Acid Solution 원문보기

資源리싸이클링 = Journal of the Korean Institute of Resources Recycling, v.28 no.6, 2019년, pp.36 - 45  

르민난 (목포대학교 공과대학 신소재공학과) ,  이만승 (목포대학교 공과대학 신소재공학과)

초록
AI-Helper 아이콘AI-Helper

석유화학공정에서 발생하는 폐촉매는 바나듐, 몰리브덴, 니켈, 코발트와 같은 희유금속을 함유하고 있다. 유기산에 의한 상기 금속의 침출에 대해 연구하였다. 본 논문에서 사용한 유기산에 의한 금속의 침출률은 옥살산 > 타르타르산 > 구연산 > 말레산 > 오스코브르산 순서이었다. 상기 유기산은 바나듐과 몰리브덴의 침출에 선택성이 있으며 옥살산에 의한 침출률이 가장 높았다. 옥살산의 농도, 반응온도, 광액밀도, 교반속도를 변화시켜 옥살산에 의한 바나듐의 최적침출조건을 얻었다. 옥살산에 의한 바나듐의 침출에 대한 속도식을 조사한 결과 Avrami식과 잘 맞았으며 활성화에너지는 8.76 kJ/mol로 물질전달에 의해 침출반응이 율속되었다.

Abstract AI-Helper 아이콘AI-Helper

The spent petroleum catalysts contain rare metals such as vanadium, nickel, molybdenum, and cobalt. Therefore, the leaching of these rare metals from spent petroleum catalysts by organic acid was investigated in the present study. The leaching efficiency of metals by organic acid was in the followin...

주제어

표/그림 (11)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Therefore, oxalic acid was selected for further leaching experiments to investigate the effect of some factors on the dissolution behavior of metals from the spent catalyst. The aim was to find the optimal conditions for the leaching of metals from spent catalysts. Since sulfur was removed from the spent catalysts by calcination, the leaching of metals results from the dissolution of metal oxides.
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. Banda, R., Nguyen, T. H., Sohn, S. H., and Lee, M. S., 2013 : Recovery of valuable metals and regeneration of acid from the leaching solution of spent HDS catalysts by solvent extraction, Hydrometallurgy, 133, pp.161-167. 

  2. Mishra, D., Chaudhury, G. R., Kim, D. J., and Ahn, J. G., 2010 : Recovery of metal values from spent petroleum catalyst using leaching-solvent extraction technique, Hydrometallurgy, 101(1-2), pp.35-40. 

  3. Barik, S. P., Park, K. H., Parhi, P. K., and Park, J. T., 2012 : Direct leaching of molybdenum and cobalt from spent hydrodesulphurization catalyst with sulphuric acid, Hydrometallurgy, 111-112(1), pp.46-51. 

  4. Marafi, M. and Stanislaus, A., 2008 : Spent catalyst waste management: A review. Part I-developments in hydroprocessing catalyst waste reduction and use, Resour. Conserv. Recycl., 52(6), pp.859-873. 

  5. Kalantar, M., Najafi, H., and Afshar, M. R., 2019 : Comparison between vanadium and niobium effects on the mechanical properties of intercritically heat treated microalloyed cast steels, Met. Mater. Int., 25(1), pp.229-237. 

  6. Huang, Y., Peng, X., Yang, Y., Wu, H., Sun, X., and Han, X., 2018 : Electroless Cu/Ni plating on graphite flake and the effects to the properties of graphite flake/Si/Al hybrid composites, Met. Mater. Int., 24(5), pp.1172-1180. 

  7. Nguyen, T. T. N. and Lee, M. S., 2019 : Improvement of alumina dissolution from the mechanically activated dross using ultrasound-assisted leaching, Korean J. Met. Mater., 57(3), pp.154-161. 

  8. Park, K. H., Mohapatra, D., and Reddy, B. R., 2006 : Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method, J. Hazard. Mater., 138(2), pp.311-316. 

  9. Kim, S. J., Lee, J. Il., Han, K. S., Byun, S. Y., Tran, T., and Kim, M. J., 2018 : Recovery of fine aluminum hydroxide with high whiteness index from low quality bauxite using caustic roasting and water leaching, Korean J. Met. Mater., 56(1), pp.49-58. 

  10. Mazurek, K., 2013 : Recovery of vanadium, potassium and iron from a spent vanadium catalyst by oxalic acid solution leaching, precipitation and ion exchange processes, Hydrometallurgy, 134-135, pp.26-31. 

  11. Erust, C., Akcil, A., Bedelova, Z., Anarbekov, K., Baikonurova, A., and Tuncuk, A., 2016 : Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: Laboratory and semipilot tests, Waste Manag., 49, pp.455-461. 

  12. Marafi, M. and Stanislaus, A., 2011 : Waste catalyst utilization: Extraction of valuable metals from spent hydroprocessing catalysts by ultrasonic-assisted leaching with acids, Ind. Eng. Chem. Res., 50(16), pp.9495-9501. 

  13. Ilhan, S., Kalpakli, A. O., Kahruman, C., and Yusufoglu, I., 2013 : The use of oxalic acid as a chelating agent in the dissolution reaction of calcium molybdate, Metall. Mater. Trans. B, 44(3), pp.495-505. 

  14. Marafi, M., Stanislaus, A., and Absi-Halabi, M., 1994 : Heavy oil hydrotreating catalyst rejuvenation by leaching of foulant metals with ferric nitrate-organic acid mixed reagents, Appl. Catal. B Environ., 4(1), pp.19-27. 

  15. Le, M. N. and Lee, M. S., 2019 : Selective dissolution of vanadium (V) from spent petroleum catalysts by oxalic acid solution. J. Min. Metall. Sect. B Metall., (under review). 

  16. Lide, D. R., 2007 : CRC Handbook of Chemistry and Physics, 87th ed., Taylor and Francis, Boca Raton, FL, pp.842-846. 

  17. Guthrie, J. P., 1978 : Hydrolysis of esters of oxy acids: $pK_a$ values for strong acids; Bronsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20 pK units, Can. J. Chem., 56(17), pp.2342-2354. 

  18. Kakumoto, T., Saito, K., and Imamura, A., 1987 : Unimolecular decomposition of oxalic acid, J. Phys. Chem., 91(9), pp.2366-2371. 

  19. Lindsay, J. G., McElcheran, D. E., and Thode, H. G., 1949 : The isotope effect in the decomposition of oxalic acid, J. Chem. Phys., 17(6), pp.589-589. 

  20. Szymczycha-Madeja, A., 2011 : Kinetics of Mo, Ni, V and Al leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide, J. Hazard. Mater., 186(2-3), pp.2157-2161. 

  21. Mulak, W., Szymczycha, A., Lesniewicz, A., and Zyrnicki, W., 2006 : Preliminary results of metals leaching from a spent hydrodesulphurization (HDS) catalyst, Physicochem. Probl. Miner. Process., 40(1), pp.69-76. 

  22. Lee, J. Y., Rao, S. V., Kumar, B. N., Kang, D. J., and Reddy, B. R., 2010 : Nickel recovery from spent Raneynickel catalyst through dilute sulfuric acid leaching and soda ash precipitation, J. Hazard. Mater., 176(1-3), pp.1122-1125. 

  23. Parhi, P. K., Park, K. H., and Senanayake, G., 2013 : A kinetic study on hydrochloric acid leaching of nickel from Ni- $Al_2O_3$ spent catalyst, J. Ind. Eng. Chem., 19(2), pp.589-594. 

  24. Li, Q., Liu, Z., and Liu, Q., 2014 : Kinetics of vanadium leaching from a spent industrial $V_2O_5/TiO_2$ catalyst by sulfuric acid, Ind. Eng. Chem. Res., 53(8), pp.2956-2962. 

  25. Sokic, M. D., Markovic, B., and Zivkovic, D., 2009 : Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid, Hydrometallurgy, 95(3), pp.273-279. 

  26. Gao, H., Jiang, T., Xu, Y., Wen, J., and Xue, X., 2018 : Leaching kinetics of vanadium and chromium during sulfuric acid leaching with microwave and conventional calcification-roasted high chromium vanadium slag, Miner. Process. Extr. Metall. Rev., pp.1-10. DOI:10.1080/08827508.2018.1538985. 

  27. Peng, H., Liu, Z., and Tao, C., 2016 : Leaching kinetics of vanadium with electro-oxidation and $H_2O_2$ in alkaline medium, Energy and Fuels, 30(9), pp.7802-7807. 

  28. Martell, A. E. and Smith, R. M., 1977 : Critical Stability Constants, Vol. 3., Springer Science + Business Media, New York, pp.92-98. 

  29. Beltran, A., Caturla, F., Cervilla, A., and Beltran, J., 1981 : Mo(VI) oxalate complexes, J. Inorg. Nucl. Chem., 43, pp.3277-3282. 

  30. Martell, A. E. and Smith, R. M., 1982 : Critical Stability Constants, Vol 5., Springer Science + Business Media, New York, pp.307-309. 

  31. Panias, D., Taxiarchou, M., Douni, I., Paspaliaris, I., and Kontopoulos, A., 2014 : Thermodynamic analysis of the reactions of iron oxides: Dissolution in oxalic acid, Can. Metall. Q., 35, pp.363-373. 

  32. Sjoberg, S. and Ohman, L. O., 1985 : Equilibrium and structural studies of silicon(IV) and aluminium(III) in aqueous solution. Part 13. A potentiometric and 27Al nuclear magnetic resonance study of speciation and equilibria in the aluminium(III)-oxalic acid-hydroxide system, J. Chem. Soc. Dalt. Trans., 12, pp.2665-2669. 

  33. Poulson, S. R., Drever, J. I., and Stillings, L. L., 1997 : Aqueous Si-oxalate complexing, oxalate adsorption onto quartz, and the effect of oxalate upon quartz dissolution rates, Chem. Geol., 140, pp.1-7. 

  34. Peng, H., Liu, Z., and Tao, C., 2015 : Selective leaching of vanadium from chromium residue intensified by electric field, J. Environ. Chem. Eng., 3(2), pp.1252-1257. 

  35. Lozano, L. J. and Juan, D., 2001 : Leaching of vanadium from spent sulphuric acid catalysts, Miner. Eng., 14(5), pp.543-546. 

  36. Dickinson, C. F. and Heal, G. R., 1999 : Solid-liquid diffusion controlled rate equations, Thermochim. Acta, 340-341, pp.89-103. 

  37. Li, M., Wei, C., Qiu, S., Zhou, X., Li, C., and Deng, Z., 2010 : Kinetics of vanadium dissolution from black shale in pressure acid leaching, Hydrometallurgy, 104(2), pp.193-200. 

  38. Ramos-Cano, J., Gonzalez-Zamarripa, G., Carrillo-Pedroza, F. R., Soria-Aguilar, M. D. J., Hurtado-Macias, A., and Cano-Vielma, A., 2016 : Kinetics and statistical analysis of nickel leaching from spent catalyst in nitric acid solution, Int. J. Miner. Process., 148, pp.41-47. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로