$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수환경에서의 마이크로플라스틱 분류 및 정의
Categorization and definition of microplastics in the water environment 원문보기

上下水道學會誌 = Journal of Korean Society of Water and Wastewater, v.33 no.6, 2019년, pp.429 - 436  

권범근 (조선이공대학교 생명환경화공과) ,  이상훈 (윈텍글로비스(주)) ,  라현주 (윈텍글로비스(주)) ,  백진 (성균관대학교) ,  김극태 (수원대학교 환경에너지공학과)

Abstract AI-Helper 아이콘AI-Helper

Since the discovery of the first artificial synthetic plastic, bakelite, polymer materials have been recognized as one of the most innovative fields of research. The plastic debris that is being piled up on the earth (called abandoned plastic litters) is now being observed everywhere on Earth, becom...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이 연구는 종래의 마이크로플라스틱 정의를 살펴보고, 환경에서 채취된 플라스틱 입자를 측정하는 방법을 고찰한다. 또한, 이 연구는 마이크로플라스틱의 크기에 중점을 둔 새로운 정의를 제안하는데 기여하고자 한다.
  • 이 연구는 종래의 마이크로플라스틱 정의를 살펴보고, 환경에서 채취된 플라스틱 입자를 측정하는 방법을 고찰한다. 또한, 이 연구는 마이크로플라스틱의 크기에 중점을 둔 새로운 정의를 제안하는데 기여하고자 한다.
  • 이 연구는 마이크로플라스틱을 식별하는 방법을 살펴보고 동시에 그 크기에 중점을 둔 새로운 정의를 제안하도록 유도하는 것으로, 다시 말하자면 마이크로플라스틱의 정의에 관해 과학적 합의를 국내적으로 활성화하는데 이바지하는 것이다.
  • 전 세계적으로 수행된 마이크로플라스틱의 모니터링 결과를 비교할 수 있고 상호 평가도 가능하게 마이크로플라스틱의 크기를 일정한 범주로 나누어서 마이크로플라스틱을 정의하기도 한다 (Hanke, 2013; Frias and Nash, 2019). 이 크기의 설정 문제에 대해 하나의 권장 사항으로 앞으로는 세 가지 크기의 마이크로플라스틱 데이터를 보고하는 것이다. 즉, 현재 시료 채취 및 분석방법을 반영하는 분류와 유사하게 마이크로플라스틱의 크기 정의를 1) 1≤100 μm; 2) 100≤ 350 μm; 3) 350 μm ~ ≤5mm로 나눈다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
플라스틱의 장점은 무엇인가? , 2015). 플라스틱 재료는 내화학성, 내부식성, 내안정성(저밀도, 저열 및 전기 전도성 등), 특히 상대적으로 저렴한 가격 등의 특성으로 인해 광범위한 용도가 존재하고 대량 생산도 매우 수월하다 (Barnes et al., 2009; Thompson et al.
폐플라스틱이 생태계에 끼치는 악영향은 무엇인가? 특히, 육상, 해양, 담수 생태계에 버려진 플라스틱 조각 혹 폐플라스틱(plastic debris, 혹은 plastic litter)은 동물(특히, 해양동물)의 생체 그물망에 얽히고 생체에 축적되어 질식, 열상, 소화 장애 등을 유발하면서 생태계에 악영향을 초래하고 있다 (Browne et al., 2008; Cole et al.
생성된 기원에 따라 마이크로플라스틱을 분류하여 설명하시오. 1). 1차 마이크로플라스틱은 미세한 크기로 이미 생산되었거 나 이미 미세한 크기로 존재하는 플라스틱 입자를 말한다. 2차 마이크로플라스틱은 환경에서 잘게 부수어지고(disintegration), 단편화(fragmentation)와 같은 풍화(weathering) 과정을 통해 자연적이거나 인위적으로 생성되는 플라스틱 입자를 말한다. 2015년과 2016년, UN 해양환경전문가그룹(GESAMP, the Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection)은 마이크로플라스틱을 나노 크기 범위의 입자를 포함하는 직경 5 mm 이하의 플라스틱 입자로 정의하도록 권고되고, 그리고 이 마이크로플라스틱의 정의가 전 세계로 퍼져서 현재 흔하게 통용되고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (39)

  1. American Chemical Society(ACS). (1993). The Bakelizer. National Historic Chemical Landmarks, Washington, D.C. 

  2. Arthur, C., Baker, J.E., and Bamford, H.A. (2009). "Effects, and fate of microplastic marine debris", Proceedings of the International Research Workshop on the Occurrence, 9-11 September, 2008, University of Washington Tacoma, Tacoma, WA, USA. 

  3. Barnes, D.K.A., Galgani, F., Thompson, R.C. and Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments, Phil. Trans. R. Soc. B., 364, 1985-1998. 

  4. Bergmann, M., Gutow, L. and Klages, M. (2015). Marine anthropogenic litter. 

  5. Besseling, E., Wang, B., Lurling, M. and Koelmans, A.A. (2014). Nanoplastic affects growth of S. obliquus and Reproduction of D. magna, Environ. Sci. Technol., 48, 12336-12343. 

  6. Besseling, E., Wegner, A., Foekema, E.M., van den Heuvel-Greve, M.J. and Koelmans, A.A. (2013). Effects of microplastic on fitness and PCB bioaccumulation by the lugworm arenicola marina (L.), Environ. Sci. Technol., 47, 593-600. 

  7. Brito, P., de Stigter, H.C., Costa, A.M., Mil-Homens, M. and Richter, T.O. (2012). Standardised protocol for monitoring microplastics in sediments, Mar. Drug., 10(8), 1812-1851. 

  8. Browne, M.A., Dissanayake, A., Galloway T.S. and Thompson, R.C. (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, mytilus edulis (L.), Environ. Sci. Technol., 42, 5026-5031. 

  9. Carpenter, E.J. and Smith, K.L. (1972). Plastics on the Sargasso sea surface, Sci., 175, 1240-1241. 

  10. Cole, M., Lindeque, P. Fileman, E., Halsband, C., Goodhead, R., Moger, J. and Galloway, T.S. (2013). Microplastic ingestion by zooplankton, Environ. Sci. Technol., 47, 6646-6655. 

  11. Cole, M., Lindeque, P. Halsband, C. and Galloway, T.S. (2011). Microplastics as contaminants in the marine environment: A review, Mar. Pollut. Bull., 62, 2588-2597. 

  12. Cole, M., Lindeque, P., Fileman, E., Halsband, C. and Galloway, T.S. (2015). The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod calanus helgolandicus, Environ. Sci. Technol., 49, 1130-1137. 

  13. Dekiff, J.H., Remy, D., Klasmeier, J. and Fries, E. (2014). Occurrence and spatial distribution of microplastics in sediments from Norderney, Environ. Pollut., 186, 248-256. 

  14. Desforges, J.W., Galbraith, M., Dangerfield, N. and Ross, P.S. (2014). Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean, Mar. Pollut. Bull., 79(1-2), 94-99. 

  15. De Witte, B., Devriese, L., Bekaert, K., Hoffman, S., Vandermeersch, G., Cooreman, K. and Robbens, J. (2014). Quality assessment of the blue mussel (Mytilus edulis): comparison between commercial and wild types, Mar. Pollut. Bull., 85(1), 146-155. 

  16. Frias, J. and Nash, R. (2019). Microplastics: Finding a consensus on the definition, Mar. Pollut. Bull., 138, 145-147. 

  17. Gago, J., Filgueiras, A., Pedrotti, M.L., Caetano, M. and Frias, J. (2019). Standardised protocol for monitoring microplastics in seawater, Deliverable 4.1. 

  18. Gigault, J., ter Halle, A., Baudrimont, M., Pascal, P-Y., Gaffre, F., Phi, T-L., Hadri, H.E., Grassl, B. and Reynaud, S. (2018). Current opinion: what is a nanoplastic?, Environ. Pollut., 235, 1030-1034. 

  19. Goldstein, M.C. and Goodwin, D.S. (2013). Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North pacific subtropical gyre, J. Life Environ. Sci., 1(e184). 

  20. Hartmann, N.B., Huffer, T., Thompson, R.C., Hassellov, M., Verschoor, A., Daugaard, A.E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling, M.P., Hess, M.C., Ivleva, N.P., Lusher, A.L. and Wagner, M. (2019). Are we speaking the same language? recommendations for a definition and categorization framework for plastic debris, Environ. Sci. Technol., 53(3), 1039-1047. 

  21. Hanke, G. (2013). Guidance on monitoring of marine litter in European seas. A guidance document within the common implementation strategy for the marine strategy framework directive, J.R.C. MSDF Technical Subgroup on Marine Litter, Report no. EUR 26113 EN, 128. 

  22. Hidalgo-Ruz, V., Gutow, L., Thompson, R.C. and Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification, Environ. Sci. Technol., 46, 3060-3075. 

  23. Kaposi, K.L., Mos, B., Kelaher, B.P. and Dworjanyn, S.A., (2014). Ingestion of microplastic has limited impact on a marine larva, Environ. Sci. Technol., 48, 1638-1645. 

  24. Kwon, B.G., Koizumi, K., Chung, S.Y., Kodera, Y., Kim, J.O. and Saido, K. (2015). Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution, J. Hazard. Mater., 300, 359-367. 

  25. Lambert, S. (2018). In Freshwater Microplastics: Emerging Environmental Contaminants?, 1-23. 

  26. Lusher, A.L., M. McHugh and Thompson, R.C. (2013). Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel, Mar. Pollut. Bull., 67, 94-99. 

  27. Lusher, A.L., Welden, N.A., Sobral, P. and Cole, M. (2017). Sampling, isolating and identifying microplastics ingested by fish and invertebrates, Anal. Methods, 9, 1346. 

  28. Mato, Y., Isobe. T., Takada, H. and Kanehiro, H. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment, Environ. Sci. Technol., 35, 318-324. 

  29. Rochman, C.M. (2018). Microplastics research-from sink to source, Science, 360(6384), 28-29. 

  30. Ryan, P.G. (2015). A brief history of marine litter research Marine anthropogenic litter, Springer, Cham., 1-25. 

  31. Setala, O., V. Fleming-Lehtinen and Lehtiniemi M. (2014). Ingestion and transfer of microplastics in the planktonic food web, Environ. Pollut., 185(0), 77-83. 

  32. Thompson, R.C., Olson, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D. and Russel, A.E. (2004). Lost at sea: where is all the plastic?, Sci., 304(5672), 838. 

  33. Thompson R.C., Moore, C.J., Saal, F.S. and Swan, S.H. (2009). Plastics, the environment and human health: current consensus and future trends, Phil. Trans. R. Soc. B., 1, 1-14. 

  34. UNEP. (2009, Marine litter: A global challenge. United Nations Environment Programme, Nairobi, 234. 

  35. Van Cauwenberghe, L., Vanreusel, A., Mees, J. and Janssen, C.R. (2013). Microplastic pollution in deep-sea sediments, Environ. Pollut., 182, 495-499. 

  36. Van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J. and Janssen, C.R. (2015). Microplastics in sediments: a review of techniques, occurrence and effects, Mar. Environ. Res., 111, 5-17. 

  37. Verschoor, A.J. (2015). Towards a definition of microplastics: Considerations for the specification of physico-chemical properties. 

  38. Wagner, M., Lambert, S., et al., (2018. Freshwater Microplastics - Emerging 

  39. Zeng, E.Y. (2018). Microplastic Contamination in Aquatic Environments: An Emerging Matter of Environmental Urgency. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로