$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

논문 상세정보

미세 플라스틱의 종합적 고찰: 근원, 경로 및 시사점

A comprehensive review of microplastics: Sources, pathways, and implications

초록

미세플라스틱 관련 대부분의 연구에서는 미세플라스틱(MP)을 5mm 미만의 플라스틱 입자로 정의하고 있다. 미세플라스틱은 자연계에 광범위하게 분포함으로써 인간과 환경에 잠재적 위험성이 높아지고 있는 물질이다. 특히 미세플라스틱은 인간을 포함하여 살아있는 생명체에게 물리적 영향을 줄 뿐만 아니라 신진대사와 호르몬 등과 같은 생태적 기능에 심각한 영향을 줄 수 있다. 따라서 본 연구는 환경에서 미세플라스틱의 근원, 경로 및 영향에 대한 이해를 돕기 위해 수행되었다. 미세플라스틱은 본질적으로 1 차 및 2 차 미세플라스틱으로 분류되며, 물리적 및 화학적 특성에 따라 분류되기도 한다. 미세플라스틱의 주요 경로는 강우유출수와 폐수를 통한 배출이며, 하천과 하구역을 거쳐 해양과 같은 대규모 수역으로 이동한다. 미세플라스틱은 폐수 처리 과정에서 크게 제거되기 때문에 폐수처리장 유출수의 미세플라스틱 농도는 강우유출수 내 농도보다 상대적으로 낮게 나타난다. 그러나 폴리머의 분포 측면에서는 폐수가 강우유출수보다 다양한 폴리머 종류를 포함하고 있는 것으로 나타났다. 폐수와 강우유출수에서 발견되는 일반적인 폴리머 유형은 폴리프로필렌(PP), 폴리염화비닐(PVC), 폴리스티렌(PS), 폴리에틸렌(PE) 및 폴리에틸렌테레프탈레이트(PET) 등으로 나타났다. 환경에서 지속적으로 배출이 증가하고 있는 미세플라스틱의 수는 인간과 다른 생명체에게 미래 위험을 줄 수 있다. 그 동안 미세플라스틱에 대한 연구 결과물의 수가 증가함에도 불구하고 환경에 미치는 영향을 완화하기 위한 구체적 규제 및 관리 전략을 수립하기에는 많은 추가 연구가 필요한 것으로 나타났다.

Abstract

Most studies defined microplastic (MP) as plastic particles less than 5 mm. The ubiquity of MP is raising awareness due to its potential risk to humans and the environment. MP can cause harmful effects to humans and living organisms. This paper review aimed to provide a better understanding of the sources, pathways, and impacts of MP in the environment. MP can be classified as primary and secondary in nature. Moreover, microplastic can also be classified as based on its physical and chemical characteristics. Stormwater and wastewater are important pathways of introducing MP in large water bodies. As compared to stormwater, the concentrations of MP in wastewater were relatively lower since wastewater treatment processes can contribute to the removal of MP. In terms of polymer distribution, wastewater contains a wider array of polymer varieties than stormwater runoff. The most common types of polymer found in wastewater and stormwater runoff were polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), polyethylene (PE) and polyethylene terephthalate (PET). The continuous discharge and the increasing number of MP in the environment can pose greater hazards and harmful effects on humans and other living organisms. Despite the growing number of publications in relation to MP, further studies are needed to define concrete regulations and management strategies for mitigating the detrimental effects of MP in the environment.

본문요약 

문제 정의
  • Therefore, this study presented a comprehensive review of the sources, pathways, and environmental impacts of MP.

    Most studies on MP reported environmental concentrations of MP in oceans and freshwater, but studies on the primary sources and pathways of MP were still limited. Therefore, this study presented a comprehensive review of the sources, pathways, and environmental impacts of MP. The primary classifications and environmental concentrations of MP were also discussed in this inquiry.

본문요약 정보가 도움이 되었나요?

저자의 다른 논문

참고문헌 (42)

  1. 1. 2015, P.-T. F. (2015). Plastics - the facts 2015: An analysis of European plastics production, demand and recovery for 2014. PlasticsEurope. https://doi.org/10.1016/j.marpolbul.2013.01.015 
  2. 2. Allsopp, M., Walters, A., Santillo, D., & Johnston, P. (2006). Plastic Debris in the World's Oceans. World. 
  3. 3. Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2011.05.030 
  4. 4. Arthur, C., Baker, J., Bamford, H., & (eds). (2009). Proceedings of the international research workshop on the occurrence, effects and fate of microplastic marine debris, Sep 9-11, 2008. NOAA. Technical Memorandum NOS-OR&R-30. NOAA, Silver Spring 530pp. September 9-11, 2008. NOAA Technical MemorandumNOS-OR&R-30. 
  5. 5. Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environmentA review of the sources, fate, effects, and potential solutions. Environment International. https://doi.org/10.1016/j.envint.2017.02.013 
  6. 6. Aytan, U., Valente, A., Senturk, Y., Usta, R., Esensoy Sahin, F. B., Mazlum, R. E., & Agirbas, E. (2016). First evaluation of neustonic microplastics in Black Sea waters. Marine Environmental Research. https://doi.org/10.1016/j.marenvres.2016.05.009 
  7. 7. Barrows, A. P. W., Neumann, C. A., Berger, M. L., & Shaw, S. D. (2017). Grab: Vs. neuston tow net: A microplastic sampling performance comparison and possible advances in the field. Analytical Methods. https://doi.org/10.1039/c6ay02387h 
  8. 8. Blair Crawford, C., & Quinn, B. (2017). Microplastic Pollutants. Candice G. Janco. 
  9. 9. Boucher, J., & Friot, D. (2017). Primary microplastics in the oceans: A global evaluation of sources. Primary microplastics in the oceans: A global evaluation of sources. https://doi.org/10.2305/iucn.ch.2017.01.en 
  10. 10. Carbery, M., O'Connor, W., & Palanisami, T. (2018). Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environment International. https://doi.org/10.1016/j.envint.2018.03.007 
  11. 11. Carpenter, E. J., & Smith, K. L. (1972). Plastics on the Sargasso sea surface. Science. https://doi.org/10.1126/science.175.4027.1240 
  12. 12. Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research. https://doi.org/10.1016/j.watres.2016.01.002 
  13. 13. Chatterjee, S., & Sharma, S. (2019). Microplastics in our oceans and marine health. Field Actions Science Report. 
  14. 14. de Lucia, G. A., Caliani, I., Marra, S., Camedda, A., Coppa, S., Alcaro, L., ... Matiddi, M. (2014). Amount and distribution of neustonic micro-plastic off the western Sardinian coast (Central-Western Mediterranean Sea). Marine Environmental Research. https://doi.org/10.1016/j.marenvres.2014.03.017 
  15. 15. Duis, K., & Coors, A. (2016). Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe. https://doi.org/10.1186/s12302-015-0069-y 
  16. 16. Estahbanati, S., & Fahrenfeld, N. L. (2016). Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere. https://doi.org/10.1016/j.chemosphere.2016.07.083 
  17. 17. Gies, E. A., LeNoble, J. L., Noel, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2018.06.006 
  18. 18. Hartmann, N. B., Huffer, T., Thompson, R. C., Hassellov, M., Verschoor, A., Daugaard, A. E., ... Wagner, M. (2019). Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environmental Science and Technology. https://doi.org/10.1021/acs.est.8b05297 
  19. 19. Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science and Technology. https://doi.org/10.1021/es2031505 
  20. 20. Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.01.190 
  21. 21. Isobe, A., Kubo, K., Tamura, Y., Kako, S., Nakashima, E., & Fujii, N. (2014). Selective transport of microplastics and mesoplastics by drifting in coastal waters. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2014.09.041 
  22. 22. Isobe, A., Uchiyama-Matsumoto, K., Uchida, K., & Tokai, T. (2017). Microplastics in the Southern Ocean. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2016.09.037 
  23. 23. Lares, M., Ncibi, M. C., Sillanpaa, M., & Sillanpaa, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research. https://doi.org/10.1016/j.watres.2018.01.049 
  24. 24. Li, J., Liu, H., & Paul Chen, J. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research. https://doi.org/10.1016/j.watres.2017.12.056 
  25. 25. Liu, F., Olesen, K. B., Borregaard, A. R., & Vollertsen, J. (2019). Microplastics in urban and highway stormwater retention ponds. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.03.416 
  26. 26. Lusher, A. L., Burke, A., O'Connor, I., & Officer, R. (2014). Microplastic pollution in the Northeast Atlantic Ocean: Validated and opportunistic sampling. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2014.08.023 
  27. 27. Lusher, A. L., Tirelli, V., O'Connor, I., & Officer, R. (2015). Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Scientific Reports. https://doi.org/10.1038/srep14947 
  28. 28. Magnusson, K., Eliasson, K., Frane, A., Haikonen, K., Hulten, J., Olshammar, M., ... Voisin, A. (2016). Swedish sources and pathways for microplastics to the marine environment. A review of existing data. IVL Svenska Miljoinstitutet. 
  29. 29. Mason, S. A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., ... Rogers, D. L. (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environmental Pollution. https://doi.org/10.1016/j.envpol.2016.08.056 
  30. 30. McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J., & Kelly, J. J. (2014). Microplastic is an abundant and distinct microbial habitat in an urban river. Environmental Science and Technology. https://doi.org/10.1021/es503610r 
  31. 31. Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science and Technology. https://doi.org/10.1021/acs.est.5b05416 
  32. 32. Park, H. J., Oh, M. J., Kim, P. G., Kim, G., Jeong, D. H., Ju, B. K., ... Kwon, J. H. (2020). National Reconnaissance Survey of Microplastics in Municipal Wastewater Treatment Plants in Korea. Environmental Science and Technology. https://doi.org/10.1021/acs.est.9b04929 
  33. 33. Pinon-Colin, T. de J., Rodriguez-Jimenez, R., Rogel-Hernandez, E., Alvarez-Andrade, A., & Wakida, F. T. (2020). Microplastics in stormwater runoff in a semiarid region, Tijuana, Mexico. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135411 
  34. 34. Rocha-Santos, T., & Duarte, A. C. (2015). A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC - Trends in Analytical Chemistry. https://doi.org/10.1016/j.trac.2014.10.011 
  35. 35. Sharma, S., & Chatterjee, S. (2017). Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-9910-8 
  36. 36. Song, Y. K., Hong, S. H., Jang, M., Han, G. M., & Shim, W. J. (2015). Occurrence and Distribution of Microplastics in the Sea Surface Microlayer in Jinhae Bay, South Korea. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-015-0209-9 
  37. 37. Sutton, R., Mason, S. A., Stanek, S. K., Willis-Norton, E., Wren, I. F., & Box, C. (2016). Microplastic contamination in the San Francisco Bay, California, USA. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2016.05.077 
  38. 38. Syberg, K., Khan, F. R., Selck, H., Palmqvist, A., Banta, G. T., Daley, J., ... Duhaime, M. B. (2015). Microplastics: Addressing ecological risk through lessons learned. Environmental Toxicology and Chemistry. https://doi.org/10.1002/etc.2914 
  39. 39. Talvitie, J., Mikola, A., Setala, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater? - A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research. https://doi.org/10.1016/j.watres.2016.11.046 
  40. 40. Treilles, R., Gasperi, J., Saad, M., Rabier, A., Breton, J., Rocher, V., ... Tassin, B. (2020). Macro and Microplastics in Stormwater and Combined Sewer Overflows in Paris Megacity. https://doi.org/10.1007/978-3-030-45909-3_23 
  41. 41. Wang, F., Wong, C. S., Chen, D., Lu, X., Wang, F., & Zeng, E. Y. (2018). Interaction of toxic chemicals with microplastics: A critical review. Water Research. https://doi.org/10.1016/j.watres.2018.04.003 
  42. 42. Ziajahromi, S., Drapper, D., Hornbuckle, A., Rintoul, L., & Leusch, F. D. L. (2020). Microplastic pollution in a stormwater floating treatment wetland: Detection of tyre particles in sediment. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.136356 

문의하기 

궁금한 사항이나 기타 의견이 있으시면 남겨주세요.

Q&A 등록

DOI 인용 스타일

"" 핵심어 질의응답