$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Current and Future Status of GIS-based Landslide Susceptibility Mapping: A Literature Review 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.35 no.1, 2019년, pp.179 - 193  

Lee, Saro (Geoscience Platform Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))

Abstract AI-Helper 아이콘AI-Helper

Landslides are one of the most damaging geological hazards worldwide, threating both humans and property. Hence, there have been many efforts to prevent landslides and mitigate the damage that they cause. Among such efforts, there have been many studies on mapping landslide susceptibility. Geographi...

주제어

표/그림 (11)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The study areas and number oflandslides were extracted from the articles to evaluate the status of global landslide occurrence. Moreover, the study area and number of landslides can be used by researchers in the future to identify new causes, apply new models, and generalize and standardize results.We also extracted the causes of and models used to simulate landslides from the articles.
  • Thisinformation was used to identify yearly trends in GIS-based landslide susceptibility mapping studies. The study areas and number oflandslides were extracted from the articles to evaluate the status of global landslide occurrence. Moreover, the study area and number of landslides can be used by researchers in the future to identify new causes, apply new models, and generalize and standardize results.
  • To evaluate the status and trends of GIS-based landslide susceptibility mapping, we analyzed 776 relevant articles published over the last 20 years (1999–2018) in terms of study area, number of articles, number of landslides, causes, and models used.

대상 데이터

  • The study areas of the investigated articles spanned many regions from 65 countries (Fig. 2); however, 83.1% of articles originated from 15 countries. The most common study areas were China (143 articles, 18.
  • To more clearly identify temporal trends, the articles were divided into three periods of 5 or 10 years based on the publication year and considering the number of articles: 1999–2008 (10 years), which included 146 articles; 2009–2013 (5 years), which included 250 articles; and 2014–2018 (5 years), which included 380 articles.
본문요약 정보가 도움이 되었나요?

참고문헌 (51)

  1. Abdulwahid, W.M. and B. Pradhan, 2017. Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR), Landslides, 14(3): 1057-1076. 

  2. Achour, Y., A. Boumezbeur, R. Hadji, A. Chouabbi, V. Cavaleiro, and E.A. Bendaoud, 2017. Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria, Arabian Journal of Geosciences, 10(8): 194. 

  3. Aditian, A., T. Kubota, and Y. Shinohara, 2018. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia, Geomorphology, 318: 101-111. 

  4. Aghdam, I.N., M.H.M. Varzandeh, and B. Pradhan, 2016. Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran), Environmental Earth Sciences, 75(7): 553. 

  5. Ahmed, B. and A. Dewan, 2017. Application of bivariate and multivariate statistical techniques in landslide susceptibility modeling in Chittagong City Corporation, Bangladesh, Remote Sensing, 9(4): 304. 

  6. Arca, D., H.S. Kutogu, and K. Becek, 2016. Landslide susceptibility mapping in an area of underground mining using the multicriteria decision analysis method, Environmental Monitoring and Assessment, 190(12): 725. 

  7. Borrelli, L., M. Ciurleo, and G. Gulla, 2018. Shallow landslide susceptibility assessment in granitic rocks using GIS-based statistical methods: the contribution of the weathering grade map, Landslides, 15(6): 1127-1142. 

  8. Chen, W., H.R. Pourghasemi, and Z. Zhao, 2017. A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping, Geocarto International, 32(4): 367-385. 

  9. Chen, W., H. Shahabi, S. Zhang, K. Khosravi, A. Shirzadi, K. Chapi, B.T. Pham, T. Zhang, L. Zhang, H. Chai, J. Ma, Y. Chen, X. Wang, R. Li, and B.B. Ahmad, 2018. Landslide susceptibility modeling based on GIS and Novel Baggingbased Kernel logistic regression, Applied Sciences (Switzerland), 8(12): 2540. 

  10. Conrad, O., B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, and J. Bohner, 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geoscientific Model Development, 8: 1991-2007. 

  11. Cui, K., D. Lu, and W. Li, 2017. Comparison of landslide susceptibility mapping based on statistical index, certainty factors, weights of evidence and evidential belief function models, Geocarto International, 32(9): 935-955. 

  12. Demir, G., 2018. Landslide susceptibility mapping by using statistical analysis in the North Anatolian Fault Zone (NAFZ) on the northern part of Susehri Town, Turkey, Natural Hazards, 92(1): 133-154. 

  13. Einsten, H. H., 1988. Landslide risk assessment procedure, In: Bonnard, C. (ed), Proc. of the Fifth International Symposium on Landslides, vol. 2, pp. 1085-1090. 

  14. Ge, Y., H. Chen, B. Zhao, H. Tang, Z. Lin, Z. Xie, L. Lv, and P. Zhong, 2018. A comparison of five methods in landslide susceptibility assessment: a case study from the 330-kV transmission line in Gansu Region, China, Environmental Earth Sciences, 77(19): 662. 

  15. Gorsevski, P.V., M.K. Brown, K. Panter, C.M. Onasch, A. Simic, and J. Snyder, 2016. Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio, Landslides, 13(3): 467-484. 

  16. Hadji, R., K. Rais, L. Gadri, A. Chouabi, and Y. Hamed, 2017. Slope Failure Characteristics and Slope Movement Susceptibility Assessment Using GIS in a Medium Scale: A Case Study from Ouled Driss and Machroha Municipalities, Northeast Algeria, Arabian Journal for Science and Engineering, 42(1): 281-300. 

  17. Hong, H., B. Pradhan, M.I. Sameen, B. Kalantar, A. Zhu, and W. Chen, 2018. Improving the accuracy of landslide susceptibility model using a novel region-partitioning approach, Landslides, 15(4): 753-772. 

  18. Jaafari, A., 2018. LiDAR-supported prediction of slope failures using an integrated ensemble weights-of-evidence and analytical hierarchy process, Environmental Earth Sciences, 77(2): 42. 

  19. Jeong, S., A. Kassim, M. Hong, and N. Saadatkhah, 2018. Susceptibility assessments of landslides in Hulu Kelang area using a geographic information system-based prediction model, Sustainability (Switzerland), 10(8): 2941. 

  20. Kadavi, P., C.-W. Lee, and S. Lee, 2018. Application of Ensemble-Based Machine Learning Models to Landslide Susceptibility Mapping, Remote Sensing, 10(8): 1252. 

  21. Kalantar, B., B. Pradhan, S. Amir Naghibi, A. Motevalli, and S. Mansor, 2018. Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN), Geomatics, Natural Hazards and Risk, 9(1): 49-69. 

  22. Kim, J.-C., S. Lee, H.-S. Jung, and S. Lee, 2018. Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea, Geocarto International, 33(9): 1000-1015. 

  23. Kornejady, A., M. Ownegh, and A. Bahremand, 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods, Catena, 152: 144-162. 

  24. Lee, J.-H., M.I. Sameen, B. Pradhan, and H.-J. Park, 2018b. Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods, Geomorphology, 303: 284-298. 

  25. Lee, S. and M.-J. Lee, 2017. Susceptibility Mapping of Umyeonsan Using Logistic Regression (LR) Model and Post-validation through Field Investigation, Korean Journal of Remote Sensing, 33(6-2): 1047-1060 (in Korean with English abstract). 

  26. Lee, S., S.-M. Hong, and H.-S. Jung, 2017. A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea, Sustainability (Switzerland), 9(1): 48. 

  27. Lee, S., M.-J. Lee, and S. Lee, 2018a. Spatial prediction of urban landslide susceptibility based on topographic factors using boosted trees, Environmental Earth Sciences, 77(18): 656. 

  28. Lyu, H.-M., J.S. Shen, and A. Arulrajah, 2018. Assessment of geohazards and preventative countermeasures using AHP incorporated with GIS in Lanzhou, China, Sustainability (Switzerland), 10(2): 304. 

  29. Mallick, J., R.K. Singh, M.A. AlAwadh, S. Islam, R.A. Khan, and M.N. Qureshi, 2018. GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia, Environmental Earth Sciences, 77(7): 276. 

  30. Nguyen, Q.-K., D.T. Bui, N.-D. Hoang, P.T. Trinh, V.-H. Nguyen, and I. Yilmaz, 2017. A novel hybrid approach based on instance based learning classifier and rotation Forest ensemble for spatial prediction of rainfall-induced shallow landslides using GIS, Sustainability, 9(5): 813. 

  31. Nicu, I.C., 2018. Application of analytic hierarchy process, frequency ratio, and statistical index to landslide susceptibility: an approach to endangered cultural heritage, Environmental Earth Sciences, 77(3): 79. 

  32. Oh, H.-J., P. Kadavi, C.-J. Lee, and S. Lee, 2018. Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models, Geomatics, Natural Hazards and Risk, 9(1): 1053-1070. 

  33. Park, S.-J., C.-W. Lee, S. Lee, and M.-J. Lee, 2018a. Landslide Susceptibility Mapping and Comparison Using Decision Tree Models: A Case Study of Jumunjin Area, Korea, Remote Sensing, 10(10): 1545. 

  34. Park, S.-J., P. Kadavi, and C.-W. Lee, 2018b. Landslide Susceptibility Mapping and Comparison Using Probabilistic Models: A Case Study of Sacheon, Jumunzin Area, Korea, Korean Journal of Remote Sensing, 34(5): 721-738 (in Korean with English abstract). 

  35. Pellicani, R., I. Argentiero, and G. Spilotro, 2017. GIS-based predictive models for regional-scale landslide susceptibility assessment and risk mapping along road corridors, Geomatics, Natural Hazards and Risk, 8(2): 1012-1033. 

  36. Pham, B.T., D. Tien Bui, I. Prakash, L.H. Nguyen, and M.B. Dholakia, 2017. A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GIS, Environmental Earth Sciences, 76(10): 371. 

  37. Pourghasemi, H.R. and O. Rahmati, 2018. Prediction of the landslide susceptibility: Which algorithm, which precision?, Catena, 162: 177-192. 

  38. Pourghasemi, H.R., Z. T. Yansari, P. Panagos, and B. Pradhan, 2018. Analysis and evaluation of landslide susceptibility: a review on articles published during 2005-2016 (periods of 2005-2012 and 2013-2016), Arabian Journal of Geosciences, 11: 193. 

  39. Rahman, M.S., B. Ahmed, and L. Di, 2017. Landslide initiation and runout susceptibility modeling in the context of hill cutting and rapid urbanization: a combined approach of weights of evidence and spatial multi-criteria, Journal of Mountain Science, 14(10): 1919-1937. 

  40. Rostami, Z.A., S.A. Al-modaresi, H. Fathizad, and M. Faramarzi, 2016. Landslide susceptibility mapping by using fuzzy logic: a case study of Cham-gardalan catchment, Ilam, Iran, Arabian Journal of Geosciences, 9(17): 685. 

  41. Shirani, K., M. Pasandi, and A. Arabameri, 2018. Landslide susceptibility assessment by Dempster-Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran, Natural Hazards, 93(3): 1379-1418. 

  42. Singh, K. and V. Kumar, 2017. Landslide hazard mapping along national highway-154A in Himachal Pradesh, India using information value and frequency ratio, Arabian Journal of Geosciences, 10(24): 539. 

  43. Singh, K. and V. Kumar, 2018. Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in bosom of Himalaya, Journal of Mountain Science, 15(4): 808-824. 

  44. Son, J., J. Suh, and H.-D. Park, 2016. GIS-based landslide susceptibility assessment in Seoul, South Korea, applying the radius of influence to frequency ratio analysis, Environmental Earth Sciences, 75(4): 310. 

  45. Pardeshi, S. D., S. E. Autade, and S. S. Pardeshi, 2013. Landslide hazard assessment: recent trends and techniques, SpringerPlus, 2(1): 523. 

  46. Tien Bui, D., H. Shahabi, A. Shirzadi, K. Chapi, M. Alizadeh, W. Chen, A. Mohammadi, B.B. Ahmad, M. Panahi, H. Hong, and Y. Tian, 2018. Landslide detection and susceptibility mapping by AIRSAR data using support vector machine and index of entropy models in Cameron Highlands, Malaysia, Remote Sensing, 10(10): 1527. 

  47. Tien Bui, D., T.A. Tuan, N.-D. Hoang, N.Q. Thanh, D.B. Nguyen, N. Van Liem, and B. Pradhan, 2017. Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization, Landslides, 14(2): 447-458. 

  48. Tien Bui, D., T.A. Tuan, H. Klempe, B. Pradhan, and I. Revhaug, 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree, Landslides, 13(2): 361-378. 

  49. Truong, X.L., M. Mitamura, Y. Kono, V. Raghavan, G. Yonezawa, X.Q. Truong, T.H. Do, D.T. Bui, and S. Lee, 2018. Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree, Applied Sciences (Switzerland), 8(7): 1046. 

  50. Wu, X., I.X. Wu, I.F. Chen, B. Zhan, and S. Hong, 2015. Global research trends in landslides during 1991-2014: a bibliometric analysis, Landslides, 12: 1215-1226. 

  51. Zhu, A.-X., Y. Miao, R. Wang, T. Zhu, Y. Deng, J. Liu, L. Yang, C.-Z. Qin, and H. Hong, 2018. A comparative study of an expert knowledge-based model and two data-driven models for landslide susceptibility mapping, Catena, 166: 317-327. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로