$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

콩에 있어서 온도 상승이 생물 계절, 수량구성요소, 단백질 및 지방함량 영향 평가
Effects of High Temperature on Soybean Physiology, Protein and Oil Content, and Yield 원문보기

Korean journal of crop science = 韓國作物學會誌, v.64 no.4, 2019년, pp.395 - 405  

이윤호 (국립식량과학원 작물재배생리과) ,  상완규 (국립식량과학원 작물재배생리과) ,  조정일 (국립식량과학원 작물재배생리과) ,  서명철 (국립식량과학원 작물재배생리과)

초록
AI-Helper 아이콘AI-Helper

본 연구는 자연 환경과 가장 유사한 온도구배 챔버에서 국내 최대 보급 품종인 대원콩, 풍산나물콩 및 대풍콩을 통해 재배기간 온도 상승에 따른 생물 계절, 수량구성요소, 단백질 및 지방함량 변화를 구명하고자 수행을 하였다. 2017년과 2018년 대원콩과 풍산나물콩은 aT+ 1에 비하여 aT+ 4에서 개화기가 지연하였다. 특히 2018년이 지연일수가 길었다. 반면 대풍콩은 일률적으로 개화를 하였다. 이러한 결과 등숙기간은 년차간과 온도구배간 약 3-9일이 지연이 되었다. 수량 구성요소에서는 2017년에 비하여 2018년이 감소 폭이 높았다. 특히 100립 중과 종실 수량이 감소하였다. 연차와 품종에 따라서 면적 당 협수의 감소는 대원콩과 대품콩이 각각 48.8%와 41.5%씩 감소를 하였다. 풍산나물콩은 14.7%가 감소를 하였다. 단백질과 지방함량은 연차, 품종 및 온도구배에 따라 고도의 유의성을 보였다. 특히 2018년이 2017년에 비하여 등숙기간 온도 상승으로 인해 단백질과 지방함량이 감소하였다. 그러나 대풍콩은 2017년에 비하여 2018년이 지방함량은 높았다. 본 연구에 알 수 있듯이 개화기에서 종실비대기사이의 온도 상승은 생물 계절을 지연과 협수와 100립 중이 감소하여 종실 수량 감소로 이어졌다. 또한 콩 종실의 주요 성분인 단백질과 지방함량을 감소시켰다. 따라서 향후 지구 온난화로 인한 수량 보다는 영양학적 측면도 연구가 진행되어야 할 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

A recent assessment by the Intergovernmental Panel on Climate Change projected that the global average surface temperature will increase by a value 1.5℃ from 2030 to 2052. In this study, we used a temperature gradient chamber that mimicked field conditions to evaluate the effect of increased ...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 시험은 지구온난화에 대한 대응 목적으로 재배기간동안 온도 상승이 생물 계절, 수량구성요소, 단백질 및 지방함량 변화에 대해서 구명하자 포장 환경과 가장 유사한 온도구배 챔버(Temperature Gradient Chambers: TGCs) (Horie et al., 1995)에서 2년간 시험을 수행하였다.
  • 본 연구는 재배기간 온도상승에 따라 콩의 생물 계절, 수량구성소요, 단백질 및 지방함량 변화에 대한 결과이다. 일반적으로 평균온도가 30℃ 이상을 넘으면 개화기와 종실비대기가 지연된다 하였다(Dornbos & Mullen, 1991; Gibson & Mullen, 1996a; Zheng et al.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
콩이란? 콩은 대표적인 기름 작물로서 식용, 사료용 및 산업용에 걸쳐 우리 주변에서 다양한 용도로 이용되고 있다. 2018년전국 콩 재배면적은 5만 638 ha로 2017년 4만 5.
콩 재배 시, 콩의 수량에 영향을 끼치는 것은? 개화기는 7월 하순에서 8월 하순 사이로 이 기간은 생육기간 중 온도가 가장 높은 시기이다. 콩의 수량은 연차간 기상 환경 변화에 매우 민감하게 반응하는데, 특히 생식생장기의 고온은 작물 생육 발달과 수량에 매우 부정 적인 영향을 준다 하였다(Ergo et al., 2018).
국내 콩의 재배 면적과 생산량 증가에도 불구하고, 단위면적당 수량은 크게 증가하지 않는 이유는? 그러나 재배 면적과 생산량 증가에도 불구하고, 단위면적당 수량은 크게 증가하지 않고 있다. 이러한 원인은 다양하지만, 최근 지구온난화로 인한 폭우와 폭염과 같은 비생물적 스트레스의 발생 빈도가 높아지면서 수량 증가에 저해를 초래하고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (47)

  1. Allen, L. H. Jr., L. Zhang, K. J. Boote, and B. A. Hauser. 2018. Elevated temperature intensity, timing, and duration of exposure affect soybean internode elongation, main stem node number, and pod number per plant. The Crop Journal. 6 : 148-161. 

  2. Bellaloui, N., Y. Hu, A. Mengistu, H. K. Abbas, M. A. Kassem, and M. Tigabu. 2016. Elevated atmospheric carbon dioxide and temperature affect seed composition, mineral, 15N and 13C dynamics in soybean genotypes under controlled environments. Atlas J. Plant Biol. 4 : 56-65. 

  3. Choi, D. H., H. Y. Ban, B. S. Seo, K. Y. Lee, and B. W. Lee. 2016. Phenology and seed yield performance of determinate soybean cultivars grown at elevated temperatures in temperate region. Plos One. Journal Pone. 0165977. 

  4. Djanaguiraman, M., P. V. V. Prasad, D. L. Boyle, and W. T. Schapaugh. 2013. Soybean pollen anatomy, viability and pod set under high temperature stress. J. Agron. Crop Sci. 199 : 171-177. 

  5. Dornbos, D. L. and Mullen. R. E. 1991. Influence of stress during soybean seed fill on seed weight, germination, and seedling growth rate. Can. J. Plant Sci. 71 : 373-383. 

  6. Dornbos, D. L. and Mullen. R. E. 1992. Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. J. Am. Oil Chem. Soc. 69(3) : 228-301. 

  7. Egli, D. and Wardlaw, I. 1980. Temperature repose of seed growth characteristics of soybean. Agron. J. 72 : 560-564. 

  8. Egli, D. B. and Bruening, W. 1992. Planting data and soybean yield: evaluation of environmental effects with a crop simulation model: SOYGRO. Agriculture and Forest Meteorology. 62 : 19-29. 

  9. Egli, D. B., D. M. Tukrony, J. J. Heitholt, and J. Rupe. 2005. Air temperate during seed filling and soybean seed germination and vigor. Crop Sci. 45 : 1329-1335. 

  10. Ergo, V. V., R. C. R. C. Lascano, R. Vega, and C. S. Parola. 2018. Heat and water stressed field-grown soybean: A multivariate study on the relationship between physiological-biochemical traits and yield. Environ. Exp. Bot. 148 : 1-11. 

  11. Fehr, W. R. and C. E. Caviness. 1997. Stages of soybean development. Iowa State University of Science and Technology Special Report 80. 

  12. Fred, S. and C. E. Watts. 1993. Dumas method for organic nitrogen. Ind. Eng. Chem. Anal. Ed. 11(6) : 333-334. 

  13. Garner, W. W. and H. A. Allard. 1930. Photoperiodic response of soybean in relation to temperature and other environmental factors. J. Agr. Research. 41(10) : 719-735. 

  14. Gibson, L. R. and R. E. Mullen. 1996a. Influence of day and night temperature on soybean seed yield. Crop Sci. 36 : 98-104. 

  15. Gibson, L. R. and R. E. Mullen. 1996b. Soybean seed composition under high day and night growth temperatures. J. Am. Oil Chem. Soc. 73(6) : 733-737. 

  16. Ha, B. K. 2019. Soybean Industrial Information. 2 : 1-14. 

  17. Hasanuzzaman, M., K. Nahar, M. M. Alam, R. Roychowdhury, and M. Fujita. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14(3) : 9643-9684. 

  18. Hesketh, J. D., D. L. Myhre, and C. R. Willey. 1973. Temperature control of time intervals between vegetative and reproductive events in soybeans. Crop Sci. 13(2) : 250-254. 

  19. Horie, T., H. Nakagawa, J. Nakano, K. Hamotanl, and H. Y. Kim. 1995. Temperature gradient chambers for resech on global environment change 3 A system designed for rice in Kyoto, Japan. Plant Cell Env. 18 :1064-1069. 

  20. IPCC. 2018. Global warming of $1.5^{\circ}C$ . Summary for policymakers. Contribution of Working Group I to the Fourth Eight Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland. 

  21. Larkindale, J., D. J. Hall, M. R. Knighth, and E. Vierling. 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermos tolerance. Plant Physiol. 138 : 882-897. 

  22. Matsuda, H., Y. Shibata, M. Shizuka, and H. Fujii. 2011. Effect of temperature during the ripening period on the 100-grain weight of soybean in shonai district of Yamagata prefecture. Japan. J. Crop. Sci. 80 : 43-48. 

  23. Mochizuki, A., T. Shiraiwa, H. Nakagawa, and T. Horie. 2005 The effect of temperature during the reproductive period on development of reproductive organs the occurrence of delayed stem senescence in soybean. Jan. J. Crop Sci. 74 : 339-343. 

  24. Mourtzinis. S., A. P. Gaspar, S. L. Naeve, and S. P. Conley. 2017. Planting data, maturity, and temperature effects on soybean seed yield and composition. Crop Ecology and Physiology. 109 : 2040-2049. 

  25. Oh-E, I., R. Uwagoh, S. Jyo, T. Kurahashi, K. Saitoh, and T. Kuroda. 2007. Effect of rising temperature on flowering, pod set, dry-matter production and yield in soybean. Jan. J. Crop Sci. 76 : 433-444. 

  26. Piper, E. L. and K. J Boote. 1999. Temperature and cultivar effects on soybean seed oil and protein concentration. J. Am. Oil Chem. Soc. 76(10) : 1233-1241. 

  27. Poeta, F., L. Borra, and J. L. Rotundo. 2016. Variation in seed protein concentration and seed size affects soybean crop growth and development. Crop Sci. 56 : 1-13. 

  28. Puteh, A. B., M. ThuZar, M. M. A. Mondal, N. A. P. B. Abdullah, and M. R. A. Halim. 2013. Soybean [Glycine max(L). Merrill] seed yield response to high temperature stress during reproductive growth stages. Australian J. Crop Sci. 10 : 1472-1479. 

  29. Rotundo, J. L. and M. E. Westgate. 2009. Meta-analysis of environmental effects on soybean seed composition. Field Crop Res. 110 : 147-156. 

  30. Rotundo, J. L., L. Borras, M. E. Westgate, and J. H. Frf. 2009. Relationship between assimilate supply per seed during seed filling and soybean seed composition. Field Crop Res. 112 : 90-96. 

  31. Sato, K. and T. Ikeda.1979. The growth responses of soybean plant to photoperiod and temperature. The effect of temperature during the ripening period on the yield and characters of seeds. Jan. J. Crop Sci. 48 : 283-290. 

  32. Sage, T. L., S. Agha, V. L. Nielson, H. A. Branch, S. Sultmanis, and R. F. Sage. 2015. The effect of high temperature stress on male and female reproduction in plants. Field Crop Res. 182 : 30-42. 

  33. Sita, K., A. Sehal, B. HanumanthaRao, R. M. Nair, P. V. V. Prasad, S. Kumar, P. M. Gaur, M. Farooq, K. H. M. Siddque, R. K. Varshney, and H. Nayar. 2017. Food legumes and rising temperatures: Effects, adaptive function mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Plant Sci. 8 : 1658. 

  34. Song, W., R. Yang, T. Wu, C. Wu, S. Sun, S. Zhang, B. Jiang, S. Tian, X. Liu, and T. Han. 2016. Analyzing the effects of climate factor on soybean protein oil contents, and composition by extensive and high-density sampling in China. J. Agr. Food Chem. 64 : 4121-4130. 

  35. Tacarindua, C. R. P., T. Shirawa, K. Homma, E. Kumagai, and R. Sameshima. 2012. The response of soybean seed growth characteristics to increase temperature under near-field conditions in temperature gradient chamber. Field Crop Res. 131 : 26-31. 

  36. Tacrindua, C. R. P., T. Shirawa, K. Homma, E. Kumagai, and R. Sameshima. 2013. The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber. Field Crop Res. 154 : 74-81. 

  37. Thomas, J. M. G., K. J. Boote, D. Pan, and L. H. Allen. 2010. Elevated temperature delays onset of reproductive growth and reduces seed growth rate of soybean. J. Agri Crop Sci. 1 : 19-32. 

  38. Thomas, J. M. G., K. J. Boote, L. H. Allen, J. M. Gallo-Meagher, and J. M. Davis. 2003. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Journal of Agro Crop Sci. 43 : 1548-1577. 

  39. Thuzar, M., A. B. Puteh, N. A. P. Abdullah, M. B. M. Lassim, and K. Jusoff. 2010. The effects of temperature stress on the quality and yield soybean [Glycine mx (L.) Merrill]. J. Agricultural Sci. 2 : 172-179. 

  40. Uchikawa, O., Y. Fukushima, and Y. Matusue. 2003. Statistical analysis of soybean yield and meteorological condition in Northern Kyush. Jpn. J. Crop Sci. 72 : 203-209. 

  41. Wheeler, T. and J. V. Braun. 2013. Climate change impact on global food security. Science. 341 : 508-513. 

  42. Wilson, R. F., W. J. W. Burton, J. A. Buck, and C. A. Brim. 1978. Studies on Genetic Male-Sterile Soybeans. I. Distribution of Plant Carbohydrate and Nitrogen during Development. Plant Physiol. 61 : 838-841. 

  43. Xu, G., S. Singh, J. Barnaby, J. Buyer, V. Reddy, and R. Sicher. 2016. Effects of growth temperature and carbon dioxide enrichment on soybean seed components at different stage of development. Plant Physiol. Bioch. 108 : 313-322. 

  44. Yamori, W., K. Noguchi, and I. Terashimal. 2005. Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependence of photosynthetic partial reactions. Plant Cell Environ. 28 : 536-547. 

  45. Yazdi, S. B., R. W. Rinne, and R. D. Seif. 1977. Components of developing soybean seeds: oil, protein, sugars, organic acids and amino acids. Agron. J. 69 : 481-486. 

  46. Zheng, H., L. Chen, and X. Han. 2009. Response of soybean yield to daytime temperature change during seed filling: along-term filed study in northeast China. Plant Prod. Sci. 12 : 526-532. 

  47. Zheng, S. H., H. Nakamoto, K. Yoshikawa, T. Furuya, and M. Fukuyama. 2002. Influences of high night temperature on flowering and pod setting in soybean. Plant Prod. Sci. 5 : 215-218. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로