$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Zymomonas mobilis를 이용한 목질계 에탄올 생산을 위한 균주 개선에 관한 연구 동향
Recent Progress in Strain Development of Zymomonas mobilis for Lignocellulosic Ethanol Production 원문보기

생명과학회지 = Journal of life science, v.29 no.1 = no.225, 2019년, pp.135 - 145  

전용재 (부경대학교, 미생물학과 응용미생물연구실)

초록
AI-Helper 아이콘AI-Helper

자이모모나스 모빌리스(Zymomonas mobilis)는 수십 년 동안 생화학적 발효 기술을 통한 수송용 에탄올을 생산하기에 적합한 산업용 미생물로 각광을 받아왔다. 최근 이 균주의 포스트 게놈 시대 도래 및 미국 듀폰사(DuPont, USA)의 세계 최대 산업용 목질계 에탄올 생산 시설 완료 등은, 이 미생물을 이용한 산업적 에탄올 생산 공정 가시화를 위한 다양한 연구들을 파생시키고 있다. 특히, 산업용 셀룰로오스 에탄올 발효공정에 이용되는 미생물은 다양한 독성 발효 저해물질 및 물리적 스트레스에 보다 쉽게 노출 될 수 있다. 따라서 본 논문은 이 미생물이 보유한 최신 생리학적 이해와 관련 된 정보와 다양한 환경적 스트레스에 견딜 수 있는 산업적 강건성 및 산업용 균주 개발 방법에 대한 사례 및 이 균주를 이용한 가격 경쟁적인 목질계 에탄올 생산 공정 개발에 필요한 균주 개발에 대한 미래 지향적 연구 방향에 대하여 기술하였다.

Abstract AI-Helper 아이콘AI-Helper

Zymomonas mobilis has been recognized as a potential industrial ethanologen for many decades due to its outstanding fermentation characteristics, including high ethanol tolerance, fast sugar uptake rate, and high theoretical ethanol yield. With the emergence of the postgenomic era and the recent ann...

Keyword

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Recent research activities on this bacterium has contributed to the increased potential for further industrial application used in other chemical production [50, 53]. This paper reviews the relatively recent information related to strain development and physiological characteristics associated with this bacterium.
본문요약 정보가 도움이 되었나요?

참고문헌 (66)

  1. Agrawal, M. and Chen, R. R. 2011. Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4. Biotechnol. Lett. 33, 2127-2133. 

  2. Alvin, A., Kim, J., Jeong, G. T., Tsang, Y. F., Kwon, E. E. and Neilan, B. A., et al. 2017. Industrial robustness linked to the gluconolactonase from Zymomonas mobilis. Appl. Microbiol. Biotechnol. 101, 5089-5099. 

  3. Barrow, K. D., Collins, J .G., Leight, D. A., Rogers, P. L. and Warr, R. G. 1984. Sorbitol production by Zymomonas mobilis. Appl. Microbiol. Biotechnol. 20, 225-232. 

  4. Chacon-Vargas, K., Chirino, A. A., Davis, M. M., Debler, S. A., Haimer, W. R. and Wilbur, J. J., et al. 2017. Genome Sequence of Zymomonas mobilis subsp. mobilis NRRL B-1960. Genome Announc. 5, e00562-17. 

  5. Charoensuk, K., Sakurada, T., Tokiyama, A., Murata, M., Kosaka, T. and Thanonkeo, P., et al. 2017. Thermotolerant genes essential for survival at a critical high temperature in thermotolerant ethanologenic Zymomonas mobilis TISTR 548. Biotechnol. Biofuels. 10, 204. 

  6. Cho, S. H., Lei, R., Henninger, T. D. and Contreras, L. M. 2014. Discovery of ethanol-responsive small RNAs in Zymomonas mobilis. Appl. Environ. Microbiol. 80, 4189-4198. 

  7. De Graaf, A. A., Striegel, K., Wittig, R. M., Laufer, B., Schmitz, G. and Wiechert, W., et al. 1999. Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by $^{13}C$ - and $^{31}P$ -NMR spectroscopy. Arch. Microbiol. 171, 371-385. 

  8. Deanda, K., Zhang, M., Eddy, C. and Picataggio, S. 1996. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl. Environ. Microbiol. 62, 4465-4470. 

  9. Desiniotis, A., Kouvelis, V. N., Davenport, K., Bruce, D., Detter, C. and Tapia, R., et al. 2012. Complete genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis centrotype ATCC 29191. J. Bacteriol. 194, 5966-5967. 

  10. Dunn, K. L. and Rao, C. V. 2014. Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis. Appl. Microbiol. Biotechnol. 98, 6897-6905. 

  11. Feldmann, S. D., Sahm, H. and Sprenger, G. A. 1992. Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains. Appl. Microbiol. Biotechnol. 38, 354-361. 

  12. Franden, M. A., Pienkos, P. T. and Zhang, M. 2009. Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. J. Biotechnol. 144, 259-267. 

  13. Franden, M. A., Pilath, H. M., Mohagheghi, A., Pienkos, P. T. and Zhang, M. 2013. Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates. Biotechnol. Biofuels. 6, 99. 

  14. Gu, H., Zhang, J. and Bao, J. 2015. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue. Biotechnol. Bioengin. 112, 1770-1782. 

  15. Haft, R. J., Keating, D. H., Schwaegler, T., Schwalbach, M. S., Vinokur, J. and Tremaine, M., et al. 2014. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc. Natl. Acad. Sci. USA. 111, E2576-2585. 

  16. He, M. X., Wu, B., Shui, Z. X., Hu, Q. C., Wang, W. G. and Tan, F. R., et al. 2012. Transcriptome profiling of Zymomonas mobilis under ethanol stress. Biotechnol. Biofuels. 5, 75. 

  17. He, M. X., Wu, B., Shui, Z. X., Hu, Q. C., Wang, W. G. and Tan, F. R. 2012. Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl. Microbiol. Biotechnol. 95, 189-199. 

  18. Hermans, M. A., Neuss, B. and Sahm, H. 1991. Content and composition of hopanoids in Zymomonas mobilis under various growth conditions. J. Bacteriol. 173, 5592-5595. 

  19. Horbach, S., Neuss, B. and Sahm, H. 1991. Effect of azasqualene on hopanoid biosynthesis and ethanol tolerance of Zymomonas mobilis. FEMS Microbiol. Lett. 79, 347-350. 

  20. Ingram, L. O. 1986. Microbial tolerance to alcohols: role of the cell membrane. Trends Biotechnol. 4, 40-44. 

  21. Ingram, L. O. 1989. Ethanol tolerance in bacteria. Crit. Rev. Biotechnol. 9, 305-319. 

  22. Jeon, Y. J., Xun, Z., Su, P. and Rogers, P. L. 2012. Genome-wide transcriptomic analysis of a flocculent strain of Zymomonas mobilis. Appl. Microbiol. Biotechnol. 93, 2513-2518. 

  23. Joachimsthal, E., Haggett, K. D., Jang, J. H. and Rogers, P. L. 1998. A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentrations. Biotechnol. Lett. 20. 

  24. Kremer, T. A., LaSarre, B., Posto, A. L. and McKinlay, J. B. 2015. $N_{2}$ gas is an effective fertilizer for bioethanol production by Zymomonas mobilis. Proc. Natl. Acad. Sci. USA. 112, 2222-2226. 

  25. Kim, I. S., Barrow, K. D. and Rogers, P. L. 2000. Nuclear magnetic resonance studies of acetic acid inhibition of rec Zymomonas mobilis ZM4(pZB5). Appl. Biochem. Biotechnol. 84-86, 357-370. 

  26. Kouvelis, V. N., Davenport, K. W., Brettin, T. S., Bruce, D., Detter, C. and Han, C. S., et al. 2011. Genome sequence of the ethanol-producing Zymomonas mobilis subsp. pomaceae lectotype strain ATCC 29192. J. Bacteriol. 193, 5049-5050. 

  27. Kouvelis, V. N., Saunders, E., Brettin, T. S., Bruce, D., Detter, C. and Han, C., et al. 2009. Complete genome sequence of the ethanol producer Zymomonas mobilis NCIMB 11163. J. Bacteriol. 191, 7140-7141. 

  28. Kouvelis, V. N., Teshima, H., Bruce, D., Detter, C., Tapia, R. and Han, C., et al. 2014. Finished genome of Zymomonas mobilis subsp. mobilis strain CP4, an applied ethanol roducer. Genome Announc. 2, e00845-13. 

  29. Lee, J. H., Skotnicki, M. L. and Rogers, P. L. 1982. Kinetic studies on a flocculent strain of Zymomonas mobilis. Biotechnol. Lett. 4, 615-620. 

  30. Liu, C., Dong, H., Zhong, J., Ryu, D. D. and Bao, J. 2010. Sorbitol production using recombinant Zymomonas mobilis strain. J. Biotechnol. 148, 105-112. 

  31. Liu, Y. F., Hsieh, C. W., Chang, Y. S. and Wung, B. S. 2017. Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation. BMC Biotechnol. 17, 63. 

  32. Loos, H., Kramer, R., Sahm, H. and Sprenger, G. A. 1994. Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. J. Bacteriol. 176, 7688-7693. 

  33. Matsushita, K., Azuma, Y., Kosaka, T., Yakushi, T., Hoshida, H. and Akada, R., et al. 2016. Genomic analyses of thermotolerant microorganisms used for high-temperature fermentations. Biosci. Biotechnol. Biochem. 80, 655-668. 

  34. Mohagheghi, A., Dowe, N., Schell, D., Chou, Y. C., Eddy, C. and Zhang, M. 2004. Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnol. Lett. 26, 321-325. 

  35. Moreau, R. A., Powell, M. J., Fett, W. F. and Whitaker, B. D. 1997. News & notes: the effect of ethanol and oxygen on the growth of Zymomonas mobilis and the levels of hopanoids and other membrane lipids. Curr. Microbiol. 35, 124-128. 

  36. Pappas, K, M., Kouvelis, V. N., Saunders, E., Brettin, T. S., Bruce, D. and Detter, C., et al. 2011. Genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis lectotype strain ATCC 10988. J. Bacteriol. 193, 5051-5052. 

  37. Rogers, P. L., Jeon, Y. J., Lee, K. J. and Lawford, H. G. 2007. Zymomonas mobilis for fuel ethanol and higher value products. Adv. Biochem. Eng. Biotechnol. 108, 263-288. 

  38. Rogers, P. L., Lee, K. J. and Tribe, D. E. 1979. Kinetics of alcohol production by Zymomonas mobilis at high sugar concentrations. Biotechnol. Lett. 1, 165-170. 

  39. Seo, J. S., Chong, H., Park, H. S., Yoon, K. O., Jung, C. and Kim, J. J., et al. 2005. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat. Biotechnol. 23, 63-68. 

  40. Shigeri, Y., Nishino, T., Yumoto, N. and Tokushige, M. 1991. Hopanoid biosynthesis of Zymomonas mobilis. Agric. Biol. Chem. 55, 589-591. 

  41. Sootsuwan, K., Thanonkeo, P., Keeratirakha, N., Thanonkeo, S., Jaisil, P. and Yamada, M. 2013. Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Biotechnol. Biofuels. 6, 180. 

  42. Tan, F., Wu, B., Dai, L., Qin, H., Shui, Z. and Wang, J., et al. 2016. Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis. Microb. Cell Fact. 15, 4. 

  43. Tan, F. R., Dai, L. C., Wu, B., Qin, H., Shui, Z. X. and Wang, J. L., et al. 2015. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein. Appl. Microbiol. Biotechnol. 99, 5363-5371. 

  44. Van Uden, N. and da Cruz Duarte, H. 1981. Effects of ethanol on the temperature profile of Saccharomyces cerevisiae. J. Basic Microbiol. 21, 743-750. 

  45. Wang, H., Cao, S., Wang, W. T., Wang, K. T. and Jia, X. 2016. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin. J. Ind. Microbiol. Biotechnol. 43, 861-871. 

  46. Wang, J. L., Wu, B., Qin, H., You, Y., Liu, S. and Shui, Z. X., et al. 2016. Engineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system. Microb. Cell Fact. 15, 101. 

  47. Wang, X., Gao, Q. and Bao, J. 2017. Enhancement of furan aldehydes conversion in Zymomonas mobilis by elevating dehydrogenase activity and cofactor regeneration. Biotechnol. Biofuels. 10, 24. 

  48. Wilke, D. 1999. Chemicals from biotechnology: molecular plant genetics will challenge the chemical and the fermentation industry. Appl. Microbiol. Biotechnol. 52, 135-145. 

  49. Xia, J., Liu, C. G., Zhao, X. Q., Xiao, Y., Xia, X. X. and Bai, F. W. 2018. Contribution of cellulose synthesis, formation of fibrils and their entanglement to the self-flocculation of Zymomonas mobilis. Biotechnol. Bioengin. 115, 2714-2525 

  50. Yang, S., Fei, Q., Zhang, Y., Contreras, L. M., Utturkar, S. M. and Brown, S. D., et al. 2016. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microbial. Biotechnol. 9, 699-717. 

  51. Yang, S., Franden, M. A., Brown, S. D., Chou, Y. C., Pienkos, P. T. and Zhang, M. 2014. Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates. Biotechnol. Biofuels. 7, 140. 

  52. Yang, S., Land, M. L., Klingeman, D. M., Pelletier, D. A, Lu, T. Y. and Martin, S. L., et al. 2010. Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 107, 10395-10400. 

  53. Yang, S., Mohagheghi, A., Franden, M. A., Chou, Y. C., Chen, X. and Dowe, N., et al. 2016. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Biotechnol. Biofuels. 9, 189. 

  54. Yang, S., Pan, C., Hurst, G. B., Dice, L., Davison, B. H. and Brown, S. D. 2014. Elucidation of Zymomonas mobilis physiology and stress responses by quantitative proteomics and transcriptomics. Front. Microbiol. 5, 246. 

  55. Yang, S., Pan, C., Tschaplinski, T. J., Hurst, G. B., Engle, N. L. and Zhou, W., et al. 2013. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses. PLoS One 7, e68886. 

  56. Yang, S., Pappas, K. M., Hauser, L. J., Land, M. L., Chen, G. L. and Hurst, G. B., et al. 2009. Improved genome annotation for Zymomonas mobilis. Nat. Biotechnol. 27, 893-894. 

  57. Yang, S., Pelletier, D. A., Lu, T. Y. and Brown, S. D. 2010. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol. 10, 135. 

  58. Yang, S., Vera, J. M., Grass, J., Savvakis, G., Moskvin, O. V. and Yang, Y., et al. 2018. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032. Biotechnol. Biofuels. 11, 125. 

  59. Yi, X., Gu, H., Gao, Q., Liu, Z. L. and Bao, J. 2015. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Biotechnol. Biofuels. 8, 153. 

  60. Yomano, L. P., York, S. W. and Ingram, L. O. 1998. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 20, 132-138. 

  61. Zhang, K., Shao, H., Cao, Q., He, M. X., Wu, B. and Feng, H. 2015. Transcriptional analysis of adaptation to high glucose concentrations in Zymomonas mobilis. Appl. Microbiol. Biotechnol. 99, 2009. 

  62. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M. and Picataggio, S. 1995. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267, 240-243. 

  63. Zhang, X., Wang, T., Zhou, W., Jia, X. and Wang, H. 2013. Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses. Microb. Cell Fact. 12, 41-41. 

  64. Zhao, N., Bai, Y., Liu, C. G., Zhao, X. Q., Xu, J. F. and Bai, F. W. 2014. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass. Biotechnol. J. 9, 362-371. 

  65. Zhao, N., Bai, Y., Zhao, X. Q., Yang, Z. Y. and Bai, F. W. 2012. Draft genome sequence of the flocculating Zymomonas mobilis strain ZM401 (ATCC 31822). J. Bacteriol. 194, 7008-7009. 

  66. Zhao, N., Pan, Y., Liu, H. and Cheng, Z. 2016. Draft Genome Sequence of Zymomonas mobilis ZM481 (ATCC 31823). Genome Announc. 4, e00193-16. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로