$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

국내 재배 상추로부터 UPLC-DAD-QToF/MS를 이용한 페놀화합물 성분 비교 연구
Study on Phenolic Compounds in Lettuce Samples Cultivated from Korea Using UPLC-DAD-QToF/MS 원문보기

한국식품영양학회지 = The Korean journal of food and nutrition, v.32 no.6, 2019년, pp.717 - 729  

김헌웅 (국립농업과학원 농식품자원부) ,  이선혜 (국립농업과학원 농식품자원부) ,  (국립농업과학원 농식품자원부) ,  이민기 (국립농업과학원 농식품자원부) ,  이수지 (국립농업과학원 농식품자원부) ,  박진주 (국립농업과학원 농식품자원부) ,  최용민 (국립농업과학원 농식품자원부) ,  이상훈 (국립농업과학원 농식품자원부)

Abstract AI-Helper 아이콘AI-Helper

The chemical informs about 70 individual phenolic compounds were constructed from various lettuce samples based on literature sources and analytical data. A total of 30 phenolic compounds including quercetin 3-O-glucuronide, quercetin 3-O-(6''-O- malonyl) glucoside, cyanidin 3-O-(6''-O-malonyl)gluco...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 따라서 본 연구는 기존 상추 종류별 국내외 연구로부터 페놀화합물 정보 라이브러리를 직접 구축하였고, 이를 기반으로 UPLC-DAD-QToF/MS 분석의 구조동정을 거쳐, 국내 재배 상추 6종에 대한 개별 페놀화합물 성분 조성 및 함량을 평가하여 비교하였으며, 고기능성 상추 품종 육성을 위한 기초자료로 활용하고자 하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
페놀화합물의 정의는? 페놀화합물(phenolic compound)은 대부분의 식품에 다양한 형태로 존재하며, 이들의 잠재적인 항산화 능력에 의해 인체 질병의 위험을 낮출 수 있기 때문에 건강 예방효과로서 상당한 관심을 받아왔을 뿐만 아니라, 식품 섭취에 있어서 매우 필수적인 성분으로 인식되고 있다(Ryu BH 1999; Shahidi & Ambigaipalan 2015). 채소는 페놀화합물의 주요 소재로 보고되어 있으며, 특히 상추(Lactuca sativa L.
상추의 페놀화합물 성분은 어떤 것들이 함유 되어 있는가? 상추는 종류, 품종, 수확시기, 기후 및 재배방법(온도, 시비, CO2 농도), 저장방법, 가공 등 조건에 따라 페놀화합물 조성 및 함량 변화가 다르게 나타난다(DuPont 등 2000; Becker 등 2014; Marin 등 2015; Becker & Klaring 2016; Dannehl 등 2016; Luna 등 2016; Assefa 등 2019). 상추에는 하이드록시신남산(hydroxycinnamic acid) 유도체 및 플라보놀(flavonol)이 주요 성분군으로 함유되어 있다. 하이드록시신남산 유도체에는 5-O-caffeoylquinic acid(chlorogenic acid), 3,5-di-O-caffeoylquinicacid(isochlorogenic acid A) 및 (2R,3R)-2,3-di-O-caffeoyltartaricacid(chicoric acid)가 주요 화합물로 확인되었으며(Romani 등 2002; Ribas-Agusti 등 2011; Materska 등 2019), 플라보놀의 경우 quercetin 3-O-(6''-O-malonyl)glucoside 및 quercetin 3-O-glucuronide가 주요 화합물로 나타났다(Ferreres 등 1997; Romani 등 2002; Caldwell CR 2003).
상추의 종류는 무엇이 있는가? 상추는 크게 반결구상추(crisphead lettuce, L. sativa L. var. capitata), 버터헤드상추(betterhead lettuce, L. sativa L. var. lores), 잎상추(leaf lettuce, L. sativa L. var. crispa) 및 로메인상추(romaine lettuce, L. sativa L. var. longifolia)로 분류되는 데, 한국에서 소비되는 상추는 대부분 청치마, 적치마, 적꽃상추 등 잎상추에 속한다(Kim 등 2016). 상추 추출물은 풍부한 페놀화합물에 근거하여 in vitro 및 in vivo 연구에서 우수한 콜레스테롤 감소(Lee 등 2009), 항당뇨(Cheng 등 2014), 항염(Mulabagal 등 2010; Pepe 등 2015; Adesso 등 2016; Hwang-Bo 등 2016) 등의 효과를 나타내는 것으로 알려져 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (56)

  1. Abu-Reidah IM, Contreras MM, Arraez-Roman D, Segura- Carretero A, Fernandez-Gutierrez A. 2013. Reversed-phase ultra-highperformance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application. J Chromatogr A 1313:212-227 

  2. Adesso S, Pepe G, Sommella E, Manfra M, Scopa A, Sofo A, Tenore GC, Russo M, Gaudio FD, Autore G, Campiglia P, Marzocco S. 2016. Anti-inflammatory and antioxidant activity of polyphenolic extracts from Lactuca sativa (var. Maravilla de Verano) under different farming methods. J Sci Food Agric 96:4194-4206 

  3. Assefa AD, Choi S, Lee JE, Sung JS, Hur OS, Ro NY, Lee HS, Jang SW, Rhee JH. 2019. Identification and quantification of selected metabolites in differently pigmented leaves of lettuce (Lactuca sativa L.) cultivars harvested at mature and bolting stages. BMC Chem 13:56 

  4. Becker C, Klaering HP, Kroh LW, Krumbein A. 2014. Cool-cultivated red leaf lettuce accumulates cyanidin-3-O-(6''-O-malonyl)-glucoside and caffeoylmalic acid. Food Chem 146:404-411 

  5. Becker C, Klaring HP, Kroh LW, Krumbein A. 2013. Temporary reduction of radiation does not permanently reduce flavonoid glycosides and phenolic acids in red lettuce. Plant Physiol Biochem 72:154-160 

  6. Becker C, Klaring HP. 2016. $CO_2$ enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations. Food Chem 199:736-745 

  7. Caldwell CR. 2003. Alkylperoxyl radical scavenging activity of red leaf lettuce (Lactuca sativa L.) phenolics. J Agric Food Chem 51:4589-4595 

  8. Cheng DM, Pogrebnyak N, Kuhn P, Poulev A, Waterman C, Rojas-Silva P, Johnson WD, Raskin I. 2014. Polyphenolrich Rutgers Scarlet lettuce improves glucose metabolism and liver lipid accumulation in diet-induced obese C57BL/6 mice. Nutrition 30:S52-S58 

  9. Damerum A, Selmes SL, Biggi GF, Clarkson GJ, Rothwell SD, Truco MJ, Michelmore RW, Hancock RD, Shellcock C, Chapman MA, Taylor G. 2015. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa). Hortic Res 2:15055 

  10. Dannehl D, Becker C, Suhl J, Josuttis M, Schmidt U. 2016. Reuse of organomineral substrate waste from hydroponic systems as fertilizer in open-field production increases yields, flavonoid glycosides, and caffeic acid derivatives of red oak leaf lettuce (Lactuca sativa L.) much more than synthetic fertilizer. J Agric Food Chem 64:7068-7075 

  11. DuPont MS, Mondin Z, Williamson G, Price KR. 2000. Effect of variety, processing, and storage on the flavonoid glycoside content and composition of lettuce and endive. J Agric Food Chem 48:3957-3964 

  12. Ferreres F, Gil MI, Castaner M, Tomas-Barberan FA. 1997. Phenolic metabolites in red pigmented lettuce (Lactuca sativa). Changes with minimal processing and cold storage. J Agric Food Chem 45:4249-4254 

  13. Garcia CJ, Gil MI, Tomas-Barberan FA. 2019. Targeted metabolomics analysis and identification of biomarkers for predicting browning of fresh-cut lettuce. J Agric Food Chem 67:5908-5917 

  14. Hohl U, Neubert B, Pforte H, Schonhof I, Bohm H. 2001. Flavonoid concentrations in the inner leaves of head lettuce genotypes. Eur Food Res Technol 213:205-211 

  15. Hwang-Bo J, Jang KO, Chung H, Park JH, Lee TH, Kim J, Chung IS. 2016. Anti-inflammatory effect of Lactuca sativa L. extract in human umbilical vein endothelial cells and improvement of lipid levels in mice fed a high-fat diet. Korean J Food Nutr 29:998-1007 

  16. Jeong SW, Kim GS, Lee WS, Kim YH, Kang NJ, Jin JS, Lee GM, Kim ST, Abd El-Aty AM, Shim JH, Shin SC. 2015. The effects of different night-time temperatures and cultivation durations on the polyphenolic contents of lettuce: Application of principal component analysis. J Adv Res 6:493-499 

  17. Jin Q, Lee C, Lee JW, Lee IS, Lee MK, Jeon WK, Hwang BY. 2012. Chemical constituents from the fruits of Prunus mume. Nat Prod Sci 18:200-203 

  18. Ju WT, Kwon OC, Kim HB, Sung GB, Kim HW, Kim YS. 2018. Qualitative and quantitative analysis of flavonoids from 12 species of Korean mulberry leaves. J Food Sci Technol 55:1789-1796 

  19. Kim HW, Kim JB, Cho SM, Chung MN, Lee YM, Chu SM, Che JH, Kim SN, Kim SY, Cho YS, Kim JH, Park HJ, Lee DJ. 2012. Anthocyanin changes in the Korean purplefleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chem 130:966-972 

  20. Kim HW, Lee MK, Lee SH, Kim YJ, Asamenew G, Yoon B, Yoo SM, Kim JB. 2018. Comparison of flavonoid glycosides from Korean and French wines using UPLC- DADQToF/MS. J Korean Soc Food Sci Nutr 47:795-803 

  21. Kim JB. Kim HW, Lee MK, Lee SH, Asamenew G, Lee S, Kim YJ, Lee SH, Choi Y, Park JJ, Yoo SM, Han GJ. 2018. RDA DB 2.0: Phenolic Acids. National Institute of Agricultural Sciences 

  22. Kim JB. Kim HW, Lee MK, Lee SH, Kim YJ, Choi BK, Cho SY, Kim HJ, Lee SH, Jang HH, Hwang YJ, Choe JS. 2016. Flavonoids Data Base 1.0. National Institute of Agricultural Sciences 

  23. Kim MJ, Moon Y, Tou JC, Mou B, Waterland NL. 2016. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J Food Compos Anal 49:19-34 

  24. Kisiel W. 1998. Flavonoids from Lactuca quercina and L. tatarica. 1998. Acta Soc Bot Pol 67:247-248 

  25. Lee JH, Felipe P, Yang YH, Kim MY, Kwon OY, Sok DE, Kim HC, Kim MR. 2009. Effects of dietary supplementation with red-pigmented leafy lettuce (Lactuca sativa) on lipid profiles and antioxidant status in C57BL/6J mice fed a high-fat high-cholesterol diet. Br J Nutr 101:1246-1254 

  26. Li Z, Zhao X, Sandhu AK, Gu L. 2010. Effects of exogenous abscisic acid on yield, antioxidant capacities, and phytochemical contents of greenhouse grown lettuces. J Agric Food Chem 58:6503-6509 

  27. Lin LZ, Harnly J, Zhang RW, Fan XE, Chen HJ. 2012. Quantitation of the hydroxycinnamic acid derivatives and the glycosides of flavonols and flavones by UV absorbance after identification by LC-MS. J Agric Food Chem 60:544-553 

  28. Llorach R, Martinez-Sanchez A, Tomas-Barberan FA, Gil MI, Ferreres F. 2008. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem 108:1028-1038 

  29. Luna MC, Tudela JA, Tomas-Barberan FA, Gil MI. 2016. Modified atmosphere (MA) prevents browning of fresh-cut romaine lettuce through multi-target effects related to phenolic metabolism. Postharvest Biol Technol 119:84-93 

  30. Mai F, Glomb MA. 2013. Isolation of phenolic compounds from iceberg lettuce and impact on enzymatic browning. J Agric Food Chem 61:2868-2874 

  31. Marin A, Ferreres F, Barbera GG, Gil MI. 2015. Weather variability influences color and phenolic content of pigmented baby leaf lettuces throughout the season. J Agric Food Chem 63:1673-1681 

  32. Martini S, Conte A, Tagliazucchi D. 2019. Bioactivity and cell metabolism of in vitro digested sweet cherry (Prunus avium) phenolic compounds. Int J Food Sci Nutr 70:335-348 

  33. Materska M, Olszowka K, Chilczuk B, Stochmal A, Peclo L, Pacholczyk-Sienicka B, Piacente S, Pizza C, Masullo M. 2019. Polyphenolic profiles in lettuce (Lactuca sativa L.) after $CaCl_2$ treatment and cold storage. Eur Food Res Technol 245:733-744 

  34. Michalska K, Kisiel W, Stojakowska A. 2015. Chemical constituents of Lactuca dregeana. Biochem Syst Ecol 59:302-304 

  35. Moreno-Escamilla JO, Alvarez-Parrilla E, de la Rosa LA, Nunez-Gastelum JA, Gonzalez-Aguilar GA, Rodrigo-Garcia J. 2017. Effect of different elicitors and preharvest day application on the content of phytochemicals and antioxidant activity of butterhead lettuce (Lactuca sativa var. capitata) produced under hydroponic conditions. J Agric Food Chem 65:5244-5254 

  36. Mulabagal V, Ngouajio M, Nair A, Zhang Y, Gottumukkala AL, Nair MG. 2010. In vitro evaluation of red and green lettuce (Lactuca sativa) for functional food properties. Food Chem 118:300-306 

  37. Pepe G, Sommella E, Manfra M, De Nisco M, Tenore GC, Scopa A, Sofo A, Marzocco S, Adesso S, Novellino T, Campiglia P. 2015. Evaluation of anti-inflammatory activity and fast UHPLC-DAD-IT-TOF profiling of polyphenolic compounds extracted from green lettuce (Lactuca sativa L.; var. Maravilla de Verano). Food Chem 167:153-161 

  38. Pernice R, Scuderi D, Napolitano A, Fogliano V, Leonardi C. 2007. Polyphenol composition and qualitative characteristics of fresh-cut lettuce in relation to cultivar, mulching, and storage. J Hortic Sci Biotech 82:420-427 

  39. Qin XX, Zhang MY, Han YY, Hao JH, Liu CJ, Fan SX. 2018. Beneficial phytochemicals with anti-tumor potential revealed through metabolic profiling of new red pigmented lettuces (Lactuca sativa L.). Int J Mol Sci 19:1165 

  40. Ribas-Agusti A, Gratacos-Cubarsi M, Sarraga C, Garcia-Regueiro JA, Castellari M. 2011. Analysis of eleven phenolic compounds including novel p-coumaroyl derivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detection. Phytochem Anal 22:555-563 

  41. Romani A, Pinelli P, Galardi C, Sani G, Cimato A, Heimler D. 2002. Polyphenols in greenhouse and open-air-grown lettuce. Food Chem 79:337-342 

  42. Ryu BH. 1999. Antioxidative effects of flavonoids toward modification of human low density lipoprotein. Korean J Food Nutr 12:320-327 

  43. Shahidi F, Ambigaipalan P. 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects: A review. J Funct Foods 18:820-897 

  44. Sobolev AP, Brosio E, Gianferri R, Segre AL. 2005. Metabolic profile of lettuce leaves by high-field NMR spectra. Magn Reson Chem 43:625-638 

  45. Sofo A, Lundegardh B, Martensson A, Manfra M, Pepe G, Sommella E, De Nisco M, Tenore GC, Campiglia P, Scopa A. 2016. Different agronomic and fertilization systems affect polyphenolic profile, antioxidant capacity and mineral composition of lettuce. Sci Hortic 204:106-115 

  46. Stojakowska A, Malarz J, Szewczyk A, Kisiel W. 2012. Caffeic acid derivatives from a hairy root culture of Lactuca virosa. Acta Physiol Plant 34:291-298 

  47. Su W, Tao R, Liu W, Yu C, Yue Z, He S, Lavelle D, Zhang W, Zhang L, An G, Zhang Y, Hu Q, Larkin RM, Michelmore RW, Kuang H, Chen J. 2019. Characterization of four polymorphic genes controlling red leaf colour in lettuce that have undergone disruptive selection since domestication. Plant Biotechnol J 1-12 

  48. Tamura H, Akioka T, Ueno K, Chujyo T, Okazaki KI, King PJ, Robinson WE. 2006. Anti-human immunodeficiency virus activity of 3,4,5-tricaffeoylquinic acid in cultured cells of lettuce leaves. Mol Nutr Food Res 50:396-400 

  49. Thabti I, Elfalleh W, Hannachi H, Ferchichi A, Campos MG. 2012. Identification and quantification of phenolic acids and flavonol glycosides in Tunisian Morus species by HPLCDAD and HPLC-MS. J Funct Foods 4:367-374 

  50. Viacava GE, Roura SI, Berrueta LA, Iriondo C, Gallo B, Alonso-Salces RM. 2017. Characterization of phenolic compounds in green and red oak-leaf lettuce cultivars by UHPLC-DAD-ESI-QToF/MS using MSE scan mode. J Mass Spectrom 52:873-902 

  51. Viacava GE, Roura SI, Lopez-Marquez DM, Berrueta LA, Gallo B, Alonso-Salces RM. 2018. Polyphenolic profile of butterhead lettuce cultivar by ultrahigh performance liquid chromatography coupled online to UV-visible spectrophotometry and quadrupole time-of-flight mass spectrometry. Food Chem 260:239-273 

  52. Wang Z, Lin L, Harnly JM, Harrington PdB, Chen P. 2014. Computer-aided method for identification of major flavone/flavonol glycosides by high-performance liquid chromatographydiode array detection-tandem mass spectrometry (HPLC-DADMS/MS). Anal Bioanal Chem 406:7695-7704 

  53. Wu X, Prior R. 2005. Identification and characterization of anthocyanins by high-performance liquid chromatographyelectrospray ionization-tandem mass spectrometry in common foods in the United States: Vegetables, nuts, and grains. J Agric Food Chem 53:3101-3113 

  54. Xu F, Zou GA, Liu YQ, Aisa HA. 2012. Chemical constituents from seeds of Lactuca sativa. Chem Nat Compound 48:574-576 

  55. Yang X, Cui X, Zhao L, Guo D, Feng L, Wei S, Zhao C, Huang D. 2017. Exogenous glycine nitrogen enhances accumulation of glycosylated flavonoids and antioxidant activity in lettuce (Lactuca sativa L.). Front Plant Sci 8:2098 

  56. Zhou W, Chen Y, Xu H, Liang X, Hu Y, Jin C, Lu L, Lin X. 2018. Short-term nitrate limitation prior to harvest improves phenolic compound accumulation in hydroponic-cultivated lettuce (Lactuca sativa L.) without reducing shoot fresh weight. J Agric Food Chem 66:10353-10361 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로