$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Geotechnical engineering behavior of biopolymer-treated soft marine soil

Geomechanics & engineering, v.17 no.5, 2019년, pp.453 - 464  

Kwon, Yeong-Man (Department of Civil Engineering, Korea Advanced Institute for Science and Technology) ,  Chang, Ilhan (School of Engineering and Information Technology, University of New South Wales (UNSW)) ,  Lee, Minhyeong (Department of Civil Engineering, Korea Advanced Institute for Science and Technology) ,  Cho, Gye-Chun (Department of Civil Engineering, Korea Advanced Institute for Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

Soft marine soil has high fine-grained soil content and in-situ water content. Thus, it has low shear strength and bearing capacity and is susceptible to a large settlement, which leads to difficulties with coastal infrastructure construction. Therefore, strength improvement and settlement control a...

주제어

참고문헌 (86)

  1. Amezketa, E., Singer, M.J. and Le Bissonnais, Y. (1996), "Testing a new procedure for measuring water-stable aggregation", Soil Sci. Soc. Amer. J., 60(3), 888-894. 

  2. Angers, D.A. (1990), "Compression of agricultural soils from Quebec", Soil Till. Res., 18(4), 357-365. 

  3. ASTM (2007), D4648-05: Standard Test Method for Laboratory Miniature Vane Shear Test for Saturated Fine-Grained Clayey Soil, ASTM, West Conshohocken, Pennsylvania, U.S.A. 

  4. ASTM (2010), D2216-10: Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International, West Conshohocken, Pennsylvania, U.S.A. 

  5. ASTM (2011), D2435: Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading, ASTM International, West Conshohocken, Pennsylvania, U.S.A. 

  6. ASTM (2014), D854-14: Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, Pennsylvania, U.S.A. 

  7. ASTM (2017), D2487-17: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, Pennsylvania, U.S.A. 

  8. ASTM (2017), D4318-17: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A. 

  9. ASTM (2017), D7928-17: Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis, ASTM International, West Conshohocken, Pennsylvania, U.S.A. 

  10. Ayeldeen, M.K., Negm, A.M. and El Sawwaf, M.A. (2016), "Evaluating the physical characteristics of biopolymer/soil mixtures", Arab. J. Geosci., 9(5), 1-13. 

  11. Barrere, G.C., Barber, C.E. and Daniels, M.J. (1986), "Molecular cloning of genes involved in the production of the extracellular polysaccharide xanthan by Xanthomonas campestris pv. Campestris", Int. J. Biol. Macromolecul., 8(6), 372-374. 

  12. Bate, B., Choo, H. and Burns, S.E. (2013), "Dynamic properties of fine-grained soils engineered with a controlled organic phase", Soil Dyn. Earthq. Eng., 53, 176-186. 

  13. Bergado, D., Sasanakul, I. and Horpibulsuk, S. (2003), "Electroosmotic consolidation of soft Bangkok clay using copper and carbon electrodes with PVD", Geotech. Test. J., 26(3), 277-288. 

  14. Bo, M.W., Arulrajah, A., Horpibulsuk, S. and Leong, M. (2015), "Quality management of prefabricated vertical drain materials in mega land reclamation projects: A case study", Soil. Found., 55(4), 895-905. 

  15. Bolto, B. and Gregory, J. (2007), "Organic polyelectrolytes in water treatment", Water Res., 41(11), 2301-2324. 

  16. Bouazza, A., Gates, W. and Ranjith, P. (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique, 59(1), 71-72. 

  17. Brunori, F., Penzo, M.C. and Torri, D. (1989), "Soil shear strength: Its measurement and soil detachability", Catena, 16(1), 59-71. 

  18. BSI, B. (1990), Methods of Test for Soils for Civil Engineering Purposes, British Standards Institution, Milton Keynes, U.K. 

  19. Cabalar, A.F., Awraheem, M.H. and Khalaf, M.M. (2018), "Geotechnical properties of a low-plasticity clay with biopolymer", J. Mater. Civ. Eng., 30(8), 04018170. 

  20. Cabalar, A.F., Wiszniewski, M. and Skutnik, Z. (2017), "Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand", Soil Mech. Found. Eng., 54(5), 356-361. 

  21. Cha, M., Santamarina, J.C., Kim, H.S. and Cho, G.C. (2014), "Small-strain stiffness, shear-wave velocity, and soil compressibility", J. Geotech. Geoenviron. Eng., 140(10), 06014011. 

  22. Chai, J., Horpibulsuk, S., Shen, S. and Carter, J.P. (2014), "Consolidation analysis of clayey deposits under vacuum pressure with horizontal drains", Geotext. Geomembranes, 42(5), 437-444. 

  23. Chang, I. and Cho, G.C. (2010), "A new alternative for estimation of geotechnical engineering parameters in reclaimed clays by using shear wave velocity", Geotech. Test. J., 33(3), 171-182. 

  24. Chang, I. and Cho, G.C. (2012), "Strengthening of Korean residual soil with ${\beta}$ -1,3/1,6-glucan biopolymer", Construct. Build. Mater., 30, 30-35. 

  25. Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. 

  26. Chang, I. and Cho, G.C. (2018), "Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay", Acta Geotechnica, 1-15. 

  27. Chang, I., Im, J. and Cho, G.C. (2016), "Introduction of microbial biopolymers in soil treatment for future environmentallyfriendly and sustainable geotechnical engineering", Sustainability, 8(3), 251. 

  28. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Construct. Build. Mater., 74, 65-72. 

  29. Chang, I., Kwon, Y.M., Im, J. and Cho, G.C. (2018), "Soil consistency and inter-particle characteristics of xanthan gum biopolymer containing soils with pore-fluid variation", Can. Geotech. J. 

  30. Chang, I., Prasidhi, A.K., Im, J. and Cho, G.C. (2015), "Soil strengthening using thermo-gelation biopolymers", Construct. Build. Mater., 77, 430-438. 

  31. Chang, S.S., Lu, W.Y.W., Park, S.H. and Kang, D.H. (2010), "Control of foodborne pathogens on ready-to-eat roast beef slurry by $\varepsilon$ -polylysine", Int. J. Food Microbiol., 141(3), 236-241. 

  32. Darwin, R.F. and Tol, R.S.J. (2001), "Estimates of the economic effects of sea level rise", Environ. Resour. Econ., 19(2), 113-129. 

  33. Doerr, W. (1952), "Pneumoconiosis caused by cement dust", Virchows Archiv fur pathologische Anatomie und Physiologie und fur klinische Medizin, 322(4), 397-427. 

  34. Dolinar, B. and Trauner, L. (2007), "The impact of structure on the undrained shear strength of cohesive soils", Eng. Geol., 92(1-2), 88-96. 

  35. Dollimore, D. and Horridge, T.A. (1973), "The dependence of the flocculation behavior of china clay-polyacrylamide suspensions on the suspension pH", J. Colloid Interface Sci., 42(3), 581-588. 

  36. Du, Y.J., Wei, M.L., Jin, F. and Liu, Z.B. (2013), "Stress-strain relation and strength characteristics of cement treated zinccontaminated clay", Eng. Geol., 167, 20-26. 

  37. Furst, E.M., Pagac, E.S. and Tilton, R.D. (1996), "Coadsorption of polylysine and the cationic surfactant cetyltrimethylammonium bromide on silica", Industr. Eng. Chem. Res., 35(5), 1566-1574. 

  38. Garcia-Ochoa, F., Santos, V.E., Casas, J.A. and Gomez, E. (2000), "Xanthan gum: Production, recovery, and properties", Biotechnol. Adv., 18(7), 549-579. 

  39. Garcia, M.C., Alfaro, M.C., Calero, N. and Munoz, J. (2011), "Influence of gellan gum concentration on the dynamic viscoelasticity and transient flow of fluid gels", Biochem. Eng. J., 55(2), 73-81. 

  40. Geornaras, I., Yoon, Y., Belk, K.E., Smith, G.C. and Sofos, J.N. (2007), "Antimicrobial activity of $\varepsilon$ -Polylysine against escherichia coli O157:H7, salmonella typhimurium, and listeria monocytogenes in various food extracts", J. Food Sci., 72(8), M330-M334. 

  41. Greenwood, M.S. and Bamberger, J.A. (2002), "Measurement of viscosity and shear wave velocity of a liquid or slurry for online process control", Ultrasonics, 39(9), 623-630. 

  42. Hansbo, S. (1957), A New Approach to the Determination of the Shear Strength of Clay by the Fall-Cone Test, Royal Swedish Geotechnical Institute. 

  43. He, J., Chu, J., Tan, S.K., Vu, T.T. and Lam, K.P. (2017), "Sedimentation behavior of flocculant-treated soil slurry", Mar. Georesour. Geotechnol., 35(5), 593-602. 

  44. Hiraki, J., Ichikawa, T., Ninomiya, S.I., Seki, H., Uohama, K., Seki, H., Kimura, S., Yanagimoto, Y. and Barnett, J.W. (2003), "Use of ADME studies to confirm the safety of $\varepsilon$ -polylysine as a preservative in food", Regul. Toxicol. Pharm., 37(2), 328-340. 

  45. Horpibulsuk, S., Chinkulkijniwat, A., Cholphatsorn, A., Suebsuk, J. and Liu, M.D. (2012), "Consolidation behavior of soil-cement column improved ground", Comput. Geotech., 43, 37-50. 

  46. Horpibulsuk, S., Miura, N. and Bergado, D.T. (2004), "Undrained shear behavior of cement admixed clay at high water content", J. Geotech. Geoenviron. Eng., 130(10), 1096-1105. 

  47. Ibanez, M., Chassagne, C., van Paassen, L. and Sittoni, L. (2015), Optimizing Dewatering and Soft Tailings Consolidation by Enhancing Tailings' Composition, in Tailings and Mine Waste, Vancounver, Canada. 

  48. Im, J., Tran, A.T.P., Chang, I. and Cho, G.C. (2017), "Dynamic properties of gel-type biopolymer-treated sands evaluated by resonant column (RC) tests", Geomech. Eng., 12(5), 815-830. 

  49. Imai, G. (1980), "Settling behavior of clay suspension", Soil. Found., 20(2), 61-77. 

  50. Kennedy, J.F. (1984), "Production, properties and applications of xanthan", Prog. Ind. Microbiol., 19, 319-371. 

  51. Kolaian, J.H. and Low, P.F. (2013), "Thermodynamic properties of water in suspensions of montmorillonite", Clay. Clay Miner., 9(1), 71-84. 

  52. Koumoto, T. and Houlsby, G.T. (2001), "Theory and practice of the fall cone test", Geotechnique, 51(8), 701-712. 

  53. Ku, T., Subramanian, S., Moon, S.W. and Jung, J. (2017), "Stress dependency of shear-wave velocity measurements in soils", J. Geotech. Geoenviron. Eng., 143(2), 04016092. 

  54. Kwon, Y.M., Im, J., Chang, I. and Cho, G.C. (2017), " $\varepsilon$ -polylysine biopolymer for coagulation of clay suspensions", Geomech. Eng., 12(5), 753-770. 

  55. Lado, M., Ben-Hur, M. and Shainberg, I. (2004), "Soil wetting and texture effects on aggregate stability, seal formation, and erosion", Soil Sci. Soc. Amer. J., 68(6), 1992-1999. 

  56. Latifi, N., Horpibulsuk, S., Meehan, C.L., Majid, M.Z.A. and Rashid, A.S.A. (2016), "Xanthan gum biopolymer: An ecofriendly additive for stabilization of tropical organic peat", Environ. Earth Sci., 75(9), 825. 

  57. Lee, J.S., Seo, S.Y. and Lee, C. (2015), "Geotechnical and geophysical characteristics of muskeg samples from Alberta, Canada", Eng. Geol., 195, 135-141. 

  58. Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. 

  59. Locat, J. and Demers, D. (1988), "Viscosity, yield stress, remolded strength, and liquidity index relationships for sensitive clays", Can. Geotech. J., 25(4), 799-806. 

  60. Locat, J., Berube, M.A. and Choquette, M. (1990), "Laboratory investigations on the lime stabilization of sensitive clays: Shear strength development", Can. Geotech. J., 27(3), 294-304. 

  61. Martin, G., Yen, T. and Karimi, S. (1996), "Application of biopolymer technology in silty soil matrices to form impervious barriers", Proceedings of the 7th Australia New Zealand Conference on Geomechanics: Geomechanics in a Changing World, Adelaide, South Australia, July. 

  62. Mazia, D., Schatten, G. and Sale, W. (1975), "Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy", J. Cell Biol., 66(1), 198-200. 

  63. Michaels, A.S. and Bolger, J.C. (1962), "Settling rates and sediment volumes of flocculated kaolin suspensions", Industr. Eng. Chem. Fund., 1(1), 24-33. 

  64. Mujah, D., Shahin, M.A. and Cheng, L. (2017), "State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization", Geomicrobiol. J., 34(6), 524-537. 

  65. Norman, L.E.J. (1958), "A comparison of values of liquid limit determined with apparatus having bases of different hardness", Geotechnique, 8(2), 79-83. 

  66. Nugent, R.A., Zhang, G. and Gambrell, R.P. (2009), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transport. Res. Rec., (2101), 34-43. 

  67. Palomino, A.M. and Santamarina, J.C. (2005), "Fabric map for kaolinite: Effects of pH and ionic concentration on behavior", Clay. Clay Miner., 53(3), 211-223. 

  68. Pan, J.R., Huang, C., Chen, S. and Chung, Y.C. (1999), "Evaluation of a modified chitosan biopolymer for coagulation of colloidal particles", Colloid Surface. A Physicochem. Eng. Asp., 147(3), 359-364. 

  69. Park, T.G., Jeong, J.H. and Kim, S.W. (2006), "Current status of polymeric gene delivery systems", Adv. Drug Delivery Rev., 58(4), 467-486. 

  70. Petzold, G., Mende, M., Lunkwitz, K., Schwarz, S. and Buchhammer, H.M. (2003), "Higher efficiency in the flocculation of clay suspensions by using combinations of oppositely charged polyelectrolytes", Colloid Surface. A Physicochem. Eng. Asp., 218(1-3), 47-57. 

  71. Phetchuay, C., Horpibulsuk, S., Arulrajah, A., Suksiripattanapong, C. and Udomchai, A. (2016), "Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer", Appl. Clay Sci., 127, 134-142. 

  72. Qureshi, M.U., Chang, I. and Al-Sadarani, K. (2017), "Strength and durability characteristics of biopolymer-treated desert sand", Geomech. Eng., 12(5), 785-801. 

  73. Rijsberman, F. (1991), Potential Costs of Adapting to Sea Level Rise in OECD Countries, in Responding to Climate Change: Selected Economic Issues, 11-50. 

  74. Rong, H., Qian, C. and Wang, R. (2011), "A cementation method of loose particles based on microbe-based cement", Sci. China Technol. Sci., 54(7), 1722-1729. 

  75. Santamarina, J.C., Klein, K.A. and Fam, M.A. (2001), Soils and Waves, John Wiley & Sons, 

  76. Sharma, B. and Bora Padma, K. (2003), "Plastic limit, liquid limit and undrained shear strength of soil-reappraisal", J. Geotech. Geoenviron. Eng., 129(8), 774-777. 

  77. Skempton, A.W. and Northey, R.D. (2008), The Sensitivity of Clays, in The Essence of Geotechnical Engineering: 60 years of Geotechnique, Thomas Telford Publishing. 

  78. Trauner, L., Dolinar, B. and Misic, M. (2005), "Relationship between the undrained shear strength, water content, and mineralogical properties of fine-grained soils", Int. J. Geomech., 5(4), 350-355. 

  79. Vardanega, P.J. and Haigh, S.K. (2014), "The undrained strengthliquidity index relationship", Can. Geotech. J., 51(9), 1073-1086. 

  80. Voordouw, G. (2013), "Interaction of oil sands tailings particles with polymers and microbial cells: First steps toward reclamation to soil", Biopolymers, 99(4), 257-262. 

  81. Wang, Y.H. and Siu, W.K. (2006), "Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations", Can. Geotech. J., 43(6), 587-600. 

  82. Wang, Z., Zhang, N., Cai, G., Jin, Y., Ding, N. and Shen, D. (2017), "Review of ground improvement using microbial induced carbonate precipitation (MICP)", Mar. Georesour. Geotechnol., 35(8), 1135-1146. 

  83. Wu, H.N., Shen, S.L., Ma, L., Yin, Z.Y. and Horpibulsuk, S. (2015), "Evaluation of the strength increase of marine clay under staged embankment loading: A case study", Mar. Georesour. Geotechnol., 33(6), 532-541. 

  84. Yasuhara, H., Neupane, D., Hayashi, K. and Okamura, M. (2012), "Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation", Soil. Found., 52(3), 539-549. 

  85. Yin, J.H. and Fang, Z. (2006), "Physical modelling of consolidation behaviour of a composite foundation consisting of a cement-mixed soil column and untreated soft marine clay", Geotechnique, 56(1), 63-68. 

  86. Youssef, M.S. (1965), "Relationships between shear strength, consolidation, liquid limit, and plastic limit for remoulded clays", Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, Canada, September. 

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로