$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 마이크로버블을 이용한 수경재배 물냉이의 글루코시놀레이트 함량 증대
Microbubbles Increase Glucosinolate Contents of Watercress (Nasturtium officinale R. Br.) Grown in Hydroponic Cultivation 원문보기

시설원예ㆍ식물공장 = Protected horticulture and plant factory, v.28 no.2, 2019년, pp.158 - 165  

복권정 (충남대학교 농업생명과학대학 원예학과) ,  최재윤 (충남대학교 농업생명과학대학 원예학과) ,  이현주 (충남대학교 농업생명과학대학 원예학과) ,  이광야 (한국농어촌공사 재난안전처 농업가뭄센터) ,  박종석 (충남대학교 농업생명과학대학 원예학과)

초록
AI-Helper 아이콘AI-Helper

본 실험은 물냉이 수경재배 시 양액 내 발생 시킨 마이크로버블이 물냉이의 생육과 glucosinolate 축적에 미치는 영향을 알아보기 위해 수행되었다. 본엽 4매의 물냉이 유묘(파종 2주 후)를 마이크로 버블과 비-마이크로버블을 발생시킨 오오츠카 배양액을 이용하여 환경조절룸에서 3주간 재배하였다. 물냉이 초장은 대조구처리가 마이크로버블처리보다 41% 증가하였으며, 유의적으로 높게 나타났다. 그러나, 지상부 생체중과 건물중, 근장, 엽장, 엽폭, SPAD, 량자수율값은 두처리간 유의적 차이는 나타나지 않았다. Glucosinolate 함량을 분석 결과 4-methoxygluco-brassicin을 제외한 glucoiberin, glucobrassicin, gluconapin, gluconasturtiin의 경우 마이크로버블 처리구가 대조구보다 유의적으로 높게 나타났으며, 물냉이 한주 당 총 glucosinolate 함량은 마이크로버블 처리구가 대조구 보다 $85%({\mu}mol/g\;DW)$$65%({\mu}mol/plant)$ 더 높게 나타났다. 본 연구 결과는 담액재배시 양액 내 마이크로버블이 물냉이의 glucosinolate 함량을 증가시킬 수 있을 것으로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

The effects of microbubbles on glucosinolate accumulation and growth of watercress (Nasturtium officinale R. Br.) were investigated. Watercress plant at the 4th mature leaf stage (2 weeks old) were exposed to microbubbles or non-microbubbles generated in an Otsuka-house nutrient solution for 3 weeks...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 그러나, 마이크로버블 기술을 이용하여 물냉이의 생육 및 2차대사산물의 변화에 대한 연구는 매우 미비하다. 따라서, 본 연구는 고품질 물냉이 생산을 위하여 담액수경 재배 시 양액내 마이크로버블 처리가 물냉이의 생육 및 glucosinolate 함량에 미치는 영향을 분석하기 위해서 수행되었다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
물냉이란? )는 미국 질병예방통제센터(Control Disease Center, USA)에서 칼로리당 영양밀도가 가장 높은 작물로 2014년도에 선정 되었다(Di noia, 2014). 물냉이는 십자화과에 속하는 다년생 수생 초본식물로 맑고 차가운 물가에서 자라며 유럽, 미국 그리고 아시아에 걸쳐 널리 분포한다(Cruz 등, 2008). 우리나라의 물냉이는 유럽 원산의 귀화식물로 “워터크레스(watercress)”로 불리지만 유럽에서는 “크레숑(cresson)”으로 더 잘 알려진 향신 채소이다.
마이크로-나노버블 기술이 필요한 이유는? 담액수경재배의 단점을 극복하기 위한 방법으로 양액 내에 산소를 공급하기 위하여 배양액의 순환주기를 조절하거나(Seo 등, 2009) 양액내 산소공급장치를 이용하는 방법 등이 이용 되고 있으며, 이중에서 마이크로-나노버블을 담액수경재배에 적용한 결과 상추의 지상부 생육이 유의적으로 증대되었다(Park과 Kurata, 2009). 이러한 결과는 배양액내 발생된 마이크로버블의 표면에 전기적음전화를 나타내는 (–)제타포텐셜에 기인하였다고 보고하였다(Takahashi, 2005).
마이크로 버블을 이용해 물냉이를 재배했을때 변화가 없던것은? 물냉이 초장은 대조구처리가 마이크로버블처리보다 41% 증가하였으며, 유의적으로 높게 나타났다. 그러나, 지상부 생체중과 건물중, 근장, 엽장, 엽폭, SPAD, 량자수율값은 두처리간 유의적 차이는 나타나지 않았다. Glucosinolate 함량을 분석 결과 4-methoxygluco-brassicin을 제외한 glucoiberin, glucobrassicin, gluconapin,gluconasturtiin의 경우 마이크로버블 처리구가 대조구보다 유의적으로 높게 나타났으며, 물냉이 한주 당 총 glucosinolate 함량은 마이크로버블 처리구가 대조구 보다 85%(μmol/g DW)와 65%(μmol/plant) 더 높게 나타났다.
질의응답 정보가 도움이 되었나요?

참고문헌 (33)

  1. Antonious, G.F., M.J. Kasperbauer, and M.E. Byers. 1996. Light reflected from colored mulches to growing turnip leaves affects glucosinolate and sugar contents of edible roots. Photochem. Photobiol. 64:605-610. 

  2. Atwell, B.J., and B.T. Steer. 1990. The effect of oxygen deficiency on uptake and distribution of nutrients in maize palnts. Plant and Soil. 122:1-8. 

  3. Caliskan, O., J. Radusiene, K.E. Temizel, Z. Staunis, C. Cirak, D. Kurt, and M.S. Odabas. 2017. The effects of salt and drought stress on phenolic accumulation in greenhousegrown Hypericum pruinatum. Ital. J. Agron. 12:271-275. 

  4. Choi, J.Y., S.J. Kim, K.J. Bok, K.Y. Lee, and J.S. Park. 2018. Effect of different nutrient solution and light quality on growth and glucosinolate contents of watercress in hydroponics. Protected Horticulture and Plant Factory 27:371-380 (in Korean). 

  5. Chun, C., and T. Takakura. 1994. Rate of root respiration of lettuce under various dissolved oxygen concentrations in hydroponics. Environmental Control in Biology. 32:125-135. 

  6. Cruz, R.M., M.C. Vieira, and C.L. Silva. 2008. Effect of heat and thermosonication treatments on watercress (Nasturtium officinale) vitamin C degradation kinetics. Innovative Food Science & Emerging Technologies 9:483-488. 

  7. Di Noia, J. 2014. Defining Powerhouse Fruits and Vegetables: A Nutrient Density Approach. Preventing chronic disease. 11. 10.5888/pcd11.130390. 

  8. Esfandiari, E., M.R. Shakiba, S.A. Mahboob, H. Alyari, and S. Shahabivand. 2008. The effect of water stress on the antioxidant content, protective enzyme activities, proline content and lipid peroxidation in wheat seedling. Pak. J. Biol. Sci. 11:1916-1922. 

  9. Frensch, J., and T.C. Hsiao. 1994. Transient responses of cell turgor and growth of maize roots as affected by changes in water potential. Plant Physiol. 104:247-254. 

  10. Gerard, E.E., G. Holden, J.D. Cohen, and G. Gardner. 2006. The Effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). J. Agri. and Food Chem. 54:328-334. 

  11. Howard, B.H. 1975. Improved rooting of cuttings by diffusion of oxygen through the rooting medium. J. Hort. Sci. 50:173-174. 

  12. Ikeura, H., H. Takahashi, F. Kobayashi, M. Sato, and M. Tamaki. 2017. Effect of different microbubble generation methods on growth of Japanese mustard spinach. J. Plant Nutrition. 40:115-127. 

  13. ISO. 1992. Rapeseed: Determination of glucosinolates content- Part 1: Method using high performance liquid chromatography, 9167-1:1992 (pp.1-9). Geneva, Switzerland. 

  14. Kopsell, D.A., T.C. Barickman, C.E. Sams, and J.S. McElroy. 2007. Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.). J. Agri. and Food Chem. 55:10628-10634. 

  15. Loughrin, J.H., and M.J. Kasperbauer. 2001. Light reflected from colored mulches affects aroma and phenol content of sweet basil (Ocimum basilicum L.) leaves. J. Agric. Food Chem. 49, 1331-1335. 

  16. Manion, L.K., D.E. Kopsell, D.A. Kopsell, C.E. Sams, and R.L. Rhkerd. 2014. Selenium fretilization influences biomass, elemental accumulations, and phytochemical concentrations in watercress. J. Plant Nutrition 37:327-342. 

  17. Mithen, R. 2001. Glucosinolates-Biochemistry, genetics and biological activity. Plant Growth Regul. 34:91-103. 

  18. Murshed, R., F. Lopez-Lauri, and H. Sallanon. 2013. Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicon L, cv. Microtom). Physiol. Mol. Biol. Pla. 19:363-378. 

  19. Palaniswamy, U., R. McAvoy, and B. Bible. 1997. Supplemental lighting before harvest increase phenethyl isothiocyanate in watercress under 8-hour photoperiod. HortScience 31:222-223. 

  20. Palaniswamy, U.R., R.J. McAvoy, B.B. Bible, and J.D. Stuart. 2003. Ontogenic variations of ascorbic acid and phenethyl isothiocyanate concentrations in watercress (Nasturtium officinale R. Br.) leaves. J. Agric. Food Chem. 51:5504-5509. 

  21. Park, J.S., and K. Kurata. 2009. Application of microbubbles to hydroponics solution promotes lettuce growth. HortTechnolgy. 19:212-215. 

  22. Park J.S., K. Ohashi, K. Kurata, and J.W. Lee. 2010. Promotion of lettuce growth by application of microbubbles in nutrient solution using different rates of electrical conductivity and under periodic intermittent generation in a deep flow technique culture system. Europ. J. Hort. Sci. 75:198-203. 

  23. Park, K.W., and Y.S. Kim. 1998. Hydroponics in horticulture. pp.129-143. Academy books, Seoul, Korea. 

  24. Park, S.K., and K.Y. Kim. 1991. Hydroponics. pp.132-156. Oseong Press, Seoul, Korea. 

  25. Rodrigues, L., I. Silva, J. Poejo, A.T. Serra, A.A. Matias, A.L. Simplicio, M.R. Bronze, and Catarina M. M. Duarte. 2016. Recovery of antioxidant and antiproliferative compounds from watercress using pressurized fluid extraction. The Royal Society of Chemistry. 6:30905-30918. 

  26. Seo, T.C., H.C. Rhee, M.Y. Rho, K.L. Choi, H.K. Yun, and C.H. Chun. 2009. Effect of circulation cycle of nutrient solution on the dissolved oxygen concentration, and the growth and phytonutrient contents of leafy vegetables grown in DFT systems. J. Bio-Environment Control. 18:112-118 (in Korean). 

  27. Son, J.E. 1999. Analyses of root-zone temperatures at various locations in NFT, DFT, and aggregate culture systems. J. Kor. Soi. Hort. Sci. 40:4-8. 

  28. Syed Alwi, S.S., B.E. Cavell, U. Teland, M.E. Morris, B.M. Parry, and G. Packham. 2010. In vivo modulation of 4E binding protein 1 (4E-BP1) phosphorylation by watercress: a pilot study. British J. Nutrition 104:1288-1296. 

  29. Takahashi, M. 2005. ${\zeta}$ Potential of microbubbles in aqueous solutions: electrical properties of the gas?water interface. J. Phys. Chem. B. 109:21858-21864. 

  30. Takahashi, M. 2009. Base and technological application of micro-bubble and nanobubble. Materials Integration. 22:2-19 (in Japanese). 

  31. Takahashi M., K. Chiba, and P. Li. 2007. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J. Phys. Chem. B 111: 1343-1347. 

  32. Yoon, J.H., M. Abe-Suzuki, P. Eko, H. Tamai, S. Hanamitsu, and K. Nakane. 2006. Negative effects of hydroxyl radicalgenerating mists (simulated dew water) on the photosynthesis and growth of Japanes apricot seedlings (Prunus mume). Ecol Res. 21:117-125 

  33. Zahradnikova, H., and K. Petrikova. 2013. Nematocid effects of watercress (Nasturtium officinale R. Br.). Acta Univ Agric Silvic Mendelianae Brun. 61:233-236. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로