$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 홍삼추출액은 lipoteichoic acid로 자극된 소교세포에서 Akt 및 MAPK 의존적으로 heme oxygenase-1 발현을 유도함으로써 NO 생성을 억제함
A Formulated Korean Red Ginseng Extract Inhibited Nitric Oxide Production through Akt- and Mitogen Activated Protein Kinase-dependent Heme Oxygenase-1 Upregulation in Lipoteichoic Acid-stimulated Microglial Cells 원문보기

생명과학회지 = Journal of life science, v.29 no.4 = no.228, 2019년, pp.402 - 409  

신지은 (부산대학교 자연과학대학 분자생물학과) ,  이경민 (부산대학교 자연과학대학 분자생물학과) ,  김지희 (BK21플러스 장수해양바이오사업단) ,  이스칸더 마디 (부산대학교 자연과학대학 분자생물학과) ,  김영희 (부산대학교 자연과학대학 분자생물학과)

초록
AI-Helper 아이콘AI-Helper

생삼을 쪄서 건조시킨 홍삼은 전통적으로 사용되고 있는 약재로서 면역, 내분비중추신경계 작용을 증진시키며 염증을 억제하는 효과가 있는 것으로 알려져 있다. 본 연구에서는 그람 양성균의 세포벽 성분인 lipoteichoic acid (LTA)에 의한 염증반응에 홍삼추출액(RGE)이 항염증 효과를 가지는지 관찰하고 그 작용 기전을 연구하였다. BV-2 소교세포에서 RGE는 세포에 독성을 유도하지 않으면서 LTA로 인한 nitric oxide (NO)의 생성과 inducible nitric oxide synthase (iNOS) 발현을 억제하였으며, NF-kB p65의 핵으로의 이동과 IkB-a의 분해 또한 억제하였다. 한편, RGE는 농도의존적으로 heme oxygenase-1 (HO-1)의 발현을 유도하였으며, HO-1 siRNA를 처리했을 때는 RGE가 iNOS의 발현을 억제하지 못하였다. RGE는 HO-1의 발현에 관여하는 전사인자인 nuclear factor E2-related factor 2 (Nrf2)를 핵으로 이동을 촉진시켰다. 또한 RGE에 의한 HO-1의 발현은 phosphatidylinositol-3-kinase(PI-3K) 및 MAPK 억제제에 의해 감소되었으며, RGE가 Akt와 ERK, p38, JNK의 인산화를 유도하였다. 이상의 결과를 종합해보면, RGE는 PI-3K/Akt 및 ERK, p38, JNK 신호전달과정을 통해 HO-1의 발현을 유도함으로써 NO와 같은 염증매개물질의 생성을 억제한다는 것을 알 수 있다. 그러므로 홍삼추출액은 그람 양성균에 의한 신경염증과 염증관련 신경계 질환의 치료제로서 사용될 수 있을 것이라 사료된다.

Abstract AI-Helper 아이콘AI-Helper

Korean red ginseng made from steaming and drying fresh ginseng has long been used as a traditional herbal medicine due to its effects on the immune, endocrine, and central nerve systems and its anti-inflammatory activity. In this study, we investigated the molecular mechanism responsible for the ant...

Keyword

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • To investigate whether RGE could abrogate LTA-mediated neuroinflammation, we examined the effects of RGE on NO production expression of in BV-2 microglial cells. Stimulation of BV-2 microglial cells with LTA increased NO synthesis and iNOS expression, whereas RGE pretreatment significantly attenuated the LTA-induced NO synthesis and iNOS expression in a dose-dependent manner (Fig.
  • To investigate whether RGE induces HO-1 expression in microglia, BV-2 cells were incubated with various concentrations of RGE. The HO-1 protein level was significantly increased after 6 hr by RGE in a dose-dependent manner (Fig.

대상 데이터

  • Louis, MO, USA). A formulated Korean red ginseng extract (Hansamin Gold) was purchased from Nonghyup Red Ginseng (Seoul, Korea). HO-1 siRNA, and antibodies for iNOS, HO-1, NF-κB p65, inhibitor of kappa B-alpha (IkB-a), histone deacetylase 3 (HDAC3), ERK, JNK, p38, Akt, α-tubulin, and b-actin were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

이론/모형

  • The cytotoxicity of RG was assessed using the microculture tetrazolium (MTT)-based colorimetric assay. The remaining cells after Griess reaction were used for MTT assay.
  • NO synthesis in cell cultures was measured by a microplate assay method. To measure nitrite, 100 ml aliquots were removed from conditioned medium and incubated with an equal volume of the Griess reagent (1% sulfanilamide/0.
본문요약 정보가 도움이 되었나요?

참고문헌 (41)

  1. Ahn, K. S. and Aggarwal, B. B. 2005. Transcription factor NF- ${\kappa}B$ : A sensor for smoke and stress signals. Ann. N. Y. Acad. Sci. 1056, 218-233. 

  2. Andrews, N. C. and Faller, D. V. 1991. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 19, 2499. 

  3. Attele, A. S., Wu, J. A. and Yuan, C. S. 1999. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685-1693. 

  4. Bal-Price, A. and Brown, G. C. 2001. Inflammatory neurodegeneration mediated by nitric oxide from activated gliainhibiting neuronal respiration, causing glutamate release and excitotoxicity. J. Neurosci. 21, 6480-6491. 

  5. Bhattacharya, S. K. and Mitra, S. K. 1991. Anxiolytic activity of Panax ginseng roots: An experimental study. J. Ethnopharmacol. 34, 87-92. 

  6. Blackwell, T. S., Blackwell, T. R., Holden, E. P., Christman, B. W. and Christman, J. W. 1996. In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation. J. Immunol. 157, 1630-1637. 

  7. Block, K. I. and Mead, M. N. 2003. Immune system effects of echinacea, ginseng, and astragalus: A review. Integr. Cancer Ther. 2, 247-267. 

  8. Doherty, G. H. 2011. Nitric oxide in neurodegeneration: Potential benefits of non-steroidal anti-inflammatories. Neurosci. Bull. 27, 366-382. 

  9. Gillis, C. N. 1997. Panax ginseng pharmacology: A nitric oxide link? Biochem. Pharmacol. 54, 1-8. 

  10. Giridharan, S. and Srinivasan, M. 2018. Mechanisms of NF-kappaB p65 and strategies for therapeutic manipulation. J. Inflamm. Res. 11, 407-419. 

  11. He, M., Huang, X., Liu, S., Guo, C., Xie, Y., Meijer, A. H. and Wang, M. 2018. The difference between white and red ginseng: Variations in ginsenosides and immunomodulation. Planta Med. 84, 845-854. 

  12. Jazwa, A. and Cuadrado, A. 2010. Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr. Drug Targets 11, 1517-1531. 

  13. Jiang-Shieh, Y. F., Yeh, K. Y., Wei, I. H., Chang, C. Y., Chien, H. F., Tsai, R. Y., Chang, M. L., Lee, A. W., Pai, M. H. and Wu, C. H. 2005. Responses of microglia in vitro to the gram-positive bacterial component, lipoteichoic acid. J. Neurosci. Res. 82, 515-524. 

  14. Jin, Y., Kotakadi, V. S., Ying, L., Hofseth, A. B., Cui, X., Wood, P. A., Windust, A., Matesic, L. E., Pena, E. A., Chiuzan, C., Singh, N. P., Nagarkatti, M., Nagarkatti, P. S., Wargovich, M. J. and Hofseth, L. J. 2008. American ginseng suppresses inflammation and DNA damage associated with mouse colitis. Carcinogenesis 29, 2351-2359. 

  15. Kang, A., Hao, H., Zheng, X., Liang, Y., Xie, Y., Xie, T., Dai, C., Zhao, Q., Wu, X., Xie, L. and Wang, G. 2011. Peripheral anti-inflammatory effects explain the ginsenosides paradox between poor brain distribution and anti-depression efficacy. J. Neuroinflammation 8, 100. 

  16. Kang, A., Xie, T., Zhu, D., Shan, J., Di, L. and Zheng, X. 2017. Suppressive effect of ginsenoside Rg3 against lipopolysaccharide-induced depression-like behavior and neuroinflammation in mice. J. Agric. Food Chem. 65, 6861-6869. 

  17. Keyse, S. M. and Tyrrell, R. M. 1989. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc. Natl. Acad. Sci. USA. 86, 99-103. 

  18. Kim, J. H., Park, G. Y., Bang, S. Y., Park, S. Y., Bae, S. K. and Kim, Y. 2014. Crocin suppresses LPS-stimulated expression of inducible nitric oxide synthase by upregulation of heme oxygenase-1 via calcium/calmodulin-dependent protein kinase 4. Mediators Inflamm. 2014, 728709. 

  19. Lee, J. S., Song, J. H., Sohn, N. W. and Shin, J. W. 2013. Inhibitory effects of ginsenoside Rb1 on neuroinflammation following systemic lipopolysaccharide treatment in mice. Phytother. Res. 27, 1270-1276. 

  20. Lee, K. W., Jung, S. Y., Choi, S. M. and Yang, E. J. 2012. Effects of ginsenoside re on LPS-induced inflammatory mediators in BV2 microglial cells. BMC Complement. Altern. Med. 12, 196. 

  21. Lee, Y. Y., Park, J. S., Lee, E. J., Lee, S. Y., Kim, D. H., Kang, J. L. and Kim, H. S. 2015. Anti-inflammatory mechanism of ginseng saponin metabolite Rh3 in lipopolysaccharide-stimulated microglia: Critical role of 5'-adenosine monophosphate-activated protein kinase signaling pathway. J. Agric. Food Chem. 63, 3472-3480. 

  22. Lin, W. M., Zhang, Y. M., Moldzio, R. and Rausch, W. D. 2007. Ginsenoside Rd attenuates neuroinflammation of dopaminergic cells in culture. J. Neural Transm. Suppl. 72, 105-112. 

  23. Liu, Y., Yin, H., Zhao, M. and Lu, Q. 2014. TLR2 and TLR4 in autoimmune diseases: A comprehensive review. Clin. Rev. Allergy Immunol. 47, 136-147. 

  24. Lull, M. E. and Block, M. L. 2010. Microglial activation and chronic neurodegeneration. Neurotherapeutics 7, 354-365. 

  25. Motohashi, H., Katsuoka, F., Engel, J. D. and Yamamoto, M. 2004. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc. Natl. Acad. Sci. USA. 101, 6379-6384. 

  26. Neher, J. J. and Brown, G. C. 2007. Neurodegeneration in models of Gram-positive bacterial infections of the central nervous system. Biochem. Soc. Trans. 35, 1166-1167. 

  27. Nemmiche, S., Chabane-Sari, D., Kadri, M. and Guiraud, P. 2012. Cadmium-induced apoptosis in the BJAB human B cell line: Involvement of PKC/ERK1/2/JNK signaling pathways in HO-1 expression. Toxicology 300, 103-111. 

  28. Otterbein, L. E., Bach, F. H., Alam, J., Soares, M., Tao Lu, H., Wysk, M., Davis, R. J., Flavell, R. A. and Choi, A. M. 2000. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6, 422-428. 

  29. Park, J. S., Shin, J. A., Jung, J. S., Hyun, J. W., Van Le, T. K., Kim, D. H., Park, E. M. and Kim, H. S. 2012. Anti-inflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice. J. Pharmacol. Exp. Ther. 341, 59-67. 

  30. Ryter, S. W. and Choi, A. M. 2010. Heme oxygenase-1/carbon monoxide: Novel therapeutic strategies in critical care medicine. Curr. Drug Targets 11, 1485-1494. 

  31. Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. and Kirschning, C. J. 1999. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J. Biol. Chem. 274, 17406-17409. 

  32. Segain, J. P., Raingeard, de la Bletiere, D., Bourreille, A., Leray, V., Gervois, N., Rosales, C., Ferrier, L., Bonnet, C., Blottiere, H. M. and Galmiche, J. P. 2000. Butyrate inhibits inflammatory responses through NFkappaB inhibition: Implications for crohn's disease. Gut 47, 397-403. 

  33. Shin, H. R., Kim, J. Y., Yun, T. K., Morgan, G. and Vainio, H. 2000. The cancer-preventive potential of Panax ginseng: A review of human and experimental evidence. Cancer Causes Control 11, 565-576. 

  34. Srisook, K., Kim, C. and Cha, Y. N. 2005. Molecular mechanisms involved in enhancing HO-1 expression: De-repression by heme and activation by Nrf2, the "one-two" punch. Antioxid. Redox Signal. 7, 1674-1687. 

  35. Sun, X. C., Ren, X. F., Chen, L., Gao, X. Q., Xie, J. X. and Chen, W. F. 2016. Glucocorticoid receptor is involved in the neuroprotective effect of ginsenoside Rg1 against inflammation-induced dopaminergic neuronal degeneration in substantia nigra. J. Steroid Biochem Mol. Biol. 155, 94-103. 

  36. Sun, Z., Huang, Z. and Zhang, D. D. 2009. Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS One 4, e6588. 

  37. Tieu, K., Ischiropoulos, H. and Przedborski, S. 2003. Nitric oxide and reactive oxygen species in parkinson's disease. IUBMB Life 55, 329-335. 

  38. Van Eldik, L. J., Thompson, W. L., Ralay Ranaivo, H., Behanna, H. A. and Martin Watterson, D. 2007. Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases: Function-based and target-based discovery approaches. Int. Rev. Neurobiol. 82, 277-296. 

  39. Wakabayashi, C., Murakami, K., Hasegawa, H., Murata, J. and Saiki, I. 1998. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem. Biophys. Res. Commun. 246, 725-730. 

  40. Wei, T., Chen, C., Hou, J., Xin, W. and Mori, A. 2000. Nitric oxide induces oxidative stress and apoptosis in neuronal cells. Biochim. Biophys. Acta 1498, 72-79. 

  41. Yang, Y., Yang, W. S., Yu, T., Sung, G. H., Park, K. W., Yoon, K., Son, Y. J., Hwang, H., Kwak, Y. S., Lee, C. M., Rhee, M. H., Kim, J. H. and Cho, J. Y. 2014. ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract. J. Ethnopharmacol. 154, 218-228. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로