$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Development of Molecular Marker through Genome Realignment for Specific Detection of Xanthomonas campestris pv. campestris Race 5, a Pathogen of Black Rot Disease 원문보기

Journal of microbiology and biotechnology, v.29 no.5, 2019년, pp.785 - 793  

Afrin, Khandker Shazia (Department of Horticulture, Sunchon National University) ,  Rahim, Md Abdur (Department of Horticulture, Sunchon National University) ,  Jung, Hee-Jeong (Department of Horticulture, Sunchon National University) ,  Park, Jong-In (Department of Horticulture, Sunchon National University) ,  Kim, Hoy-Taek (Department of Horticulture, Sunchon National University) ,  Nou, Ill-Sup (Department of Horticulture, Sunchon National University)

Abstract AI-Helper 아이콘AI-Helper

Black rot caused by Xanthomonas campestris pv. campestris (Xcc) is the most damaging disease in Brassica crops around the world. In this study, we developed a molecular marker specific to Xcc race 5. To do this, the available whole genome sequences of Xcc races/strains and Xc subspecies were aligned...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Our research group has already developed race-specific molecular markers for Xcc race 1, 3, and 4 [22, 23] and some others are under development. Therefore, the objective of this study was to also develop a marker for rapid detection of Xcc race 5.
  • oryzae (Xoo) and Xcc [21-23]. Thus, one of our research goals is to identify and determine the predominant Xcc races in Korea. Our research group has already developed race-specific molecular markers for Xcc race 1, 3, and 4 [22, 23] and some others are under development.
본문요약 정보가 도움이 되었나요?

참고문헌 (40)

  1. Vicente JG, Conway J, Roberts SJ, Taylor JD. 2001. Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology 91: 492-499. 

  2. Soengas P, Hand P, Vicente JG, Pole JM, Pink DAC. 2007. Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor. Appl. Genet. 114: 637-645. 

  3. Lema M, Cartea ME, Sotelo T, Velasco P, Soengas P. 2012. Discrimination of Xanthomonas campestris pv. campestris races among strains from northwestern Spain by Brassica spp. genotypes and rep-PCR. Eur. J. Plant Pathol. 133: 159-169. 

  4. Williams PH. 1980. Black rot: a continuing threat to world crucifers. Plant Dis. 64: 736-742. 

  5. Cook AA, Walker JC, Larson RH. 1952. Studies on the disease cycle of black rot of crucifers. Phytopathology 42: 162-167. 

  6. Kifuji Y, Hanzawa H, Terasawa Y, Ashutosh, Nishio T. 2013. QTL analysis of black rot resistance in cabbage using newly developed EST-SNP markers. Euphytica 190: 289-295. 

  7. Tonu NN, Shimizu M, Karim MM, Kawanabe T, Fujimoto R, Okazaki K, et al. 2013. Comparison of positions of QTLs conferring resistance to Xanthomonas campestris pv. campestris in Brassica oleracea. Am. J. Plant Sci. 4: 11-20. 

  8. Massomo SMS, Nielsen H, Mabagala RB, Mansfeld-Giese K, Hockenhull J, Mortensen CN. 2003. Identification and characterisation of Xanthomonas campestris pv. campestris strains from Tanzania by pathogenicity tests, biolog, rep-PCR and fatty acid methyl ester analysis. Eur. J. Plant Pathol. 109: 775-789. 

  9. Kim B. 1986. Testing for detection of Xanthomonas campestris pv. campestris in crucifer seeds and seed disinfection. Korean J. Plant Pathol. 2: 96-101. 

  10. Kamoun S, Kamdar HV, Tola E, Kado CI. 1992. Incompatible interactions between Crucifers and Xanthomonas campestris involve a vascular hypersensitive response: role of the hrpK locus. Mol. Plant-Microbe Interact. 5: 22-33. 

  11. Fargier E, Manceau C. 2007. Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol. 56: 805-818. 

  12. Cruz J, Tenreiro R, Cruz L. 2017. Assessment of diversity of Xanthomonas campestris pathovars affecting cruciferous plants in Portugal and disclosure of two novel X. campestris pv. campestris races. J. Plant Pathol. 99: 403-414. 

  13. Afrin KS, Rahim MA, Park JI, Natarajan S, Rubel MH, Kim HT, et al. 2018. Screening of cabbage (Brassica oleracea L.) germplasm for resistance to black rot. Plant Breed. Biotechnol. 6: 30-43. 

  14. Jensen BD, Vicente JG, Manandhar HK, Roberts SJ. 2010. Occurrence and diversity of Xanthomonas campestris pv. campestris in vegetable Brassica fields in Nepal. Plant Dis. 94: 298-305. 

  15. Vicente JG, Holub EB. 2013. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol. Plant Pathol. 14: 2-18. 

  16. Galan J, Collmer A. 1999. Type III secretion machines:bacterial devices for protein delivery into host cells. Science 284: 1322-1328. 

  17. Buttner D, He SY. 2009. Type III protein secretion in plant pathogenic bacteria. Plant Physiol. 150: 1656-1664. 

  18. Zaccardelli M, Campanile F, Spasiano A, Merighi M. 2007. Detection and identification of the crucifer pathogen, Xanthomonas campestris pv. campestris, by PCR amplification of the conserved Hrp/type III secretion system gene hrcC. Eur. J. Plant Pathol. 118: 299-306. 

  19. Jiang BL, He YQ, Cen WJ, Wei HY, Jiang GF, Jiang W, et al. 2008. The type III secretion effector xopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res. Microbiol. 159: 216-220. 

  20. Ignatov AN, Monakhos GF, Djalilov FS, Pozmogova GV. 2002. Avirulence gene from Xanthomonas campestris pv. campestris homologous to the avrBs2 locus is recognized in race-specific reaction by two different resistance genes in brassicas. Russ. J. Genet. 38: 1404-1410. 

  21. Song ES, Kim SY, Noh TH, Cho H, Chae SC, Lee BM. 2014. PCR-based assay for rapid and specific detection of the new Xanthomonas oryzae pv. oryzae K3a race using an AFLPderived marker. J. Microbiol. Biotechnol. 24: 732-739. 

  22. Rubel MH, Robin AHK, Natarajan S, Vicente JG, Kim HT, Park JI, et al. 2017. Whole-genome re-alignment facilitates development of specific molecular markers for races 1 and 4 of Xanthomonas campestris pv. campestris, the cause of black rot disease in Brassica oleracea. Int. J. Mol. Sci. 18(12) pii: E2523. 

  23. Afrin KS, Rahim MA, Rubel MH, Natarajan S, Song JY, Kim HT, et al. 2018. Development of race-specific molecular marker for Xanthomonas campestris pv. campestris race 3, the causal agent of black rot of crucifers. Can. J. Plant Sci. 98:1119-1125. 

  24. King EO, Ward MK, Raney DE. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44: 301-3.7. 

  25. Darling ACE, Mau B, Blattner FR, Perna NT. 2004. Mauve:multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14: 1394-1403. 

  26. Luongo L, Vitale S, Haegi A, Belisario A. 2012. Development of SCAR markers and PCR assays for Fusarium oxysporum f. sp. melonis race 2 specific detection. J. Plant Pathol. 94: 193-199. 

  27. Lin YH, Chang JY, Liu ET, Chao CP, Huang JW, Chang PFL.2009. Development of a molecular marker for specific detection of Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol. 123: 353-365. 

  28. Wang BT, Hu XP, Li Q, Hao BJ, Zhang B, Li GB, et al. Development of race-specific SCAR markers for detection of Chinese races CYR32 and CYR33 of Puccinia striiformis f. sp. tritici. Plant Dis. 94: 221-228. 

  29. Ferreira RM, de Oliveira ACP, Moreira LM, Belasque J, Gourbeyre E, Siguier P, et al. 2015. A TALE of Transposition:Tn3-like transposons play a major role in the spread of pathogenicity determinants of Xanthomonas citri and other xanthomonads. MBio 6: e02505-14. 

  30. Klaer R, Kuhn S, Tillmann E, Fritz H-J, Starlinger P. 1981. The sequence of IS4. Mol. Gen. Genet. 181: 169-175. 

  31. Vorholter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, et al. 2008. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J. Biotechnol. 134: 33-45. 

  32. Bolot S, Cerutti A, Carrere S, Arlat M, Fischer-Le Saux M, Portier P, et al. 2015. Genome sequences of the race 1 and race 4 Xanthomonas campestris pv. campestris strains CFBP 1869 and CFBP 5817. Genome Announc. 3: e01023-15. 

  33. Bolot S, Guy E, Carrere S, Barbe V, Arlat M, Noel LD. 2013. Genome sequence of Xanthomonas campestris pv. campestris strain Xca5. Genome Announc. 1: e00032-12. 

  34. da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, et al. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417: 459-463. 

  35. Qian W, Jia Y, Ren S, He Y, Feng J, Lu L, et al. 2005. Comparative and functional genomic analyses of the pathogenicity of phytopathogen. Genome Res. 15: 757-767. 

  36. Desai D, Li J-H, van Zijll de Jong E, Braun R, Pitman A, Visnovsky S, et al. 2015. Draft genome sequences of two New Zealand Xanthomonas campestris pv. campestris isolates, ICMP 4013 and ICMP 21080. Genome Announc. 3: e01247-15. 

  37. Liu YC, Wang SC, Yu YJ, Fung KM, Yang MT, Tseng YH, et al. 2015. Complete genome sequence of Xanthomonas campestris pv. campestris strain 17 from Taiwan. Genome Announc. 3:e01466-15. 

  38. Roux B, Bolot S, Guy E, Denance N, Lautier M, Jardinaud M-F, et al. 2015. Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome. BMC Genomics 16: 975. 

  39. Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli S V, Patil PB, et al. 2011. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J. Bacteriol. 193: 5450-5464. 

  40. Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Buttner D, et al. 2005. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187: 7254-7266. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로