$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

침강지 시설이 조성된 LID 시설의 환경적 영향평가
Comparative assessment of urban stormwater low impact strategies equipped with pre-treatment zones 원문보기

한국습지학회지 = Journal of wetlands research, v.21 no.2, 2019년, pp.181 - 190  

(공주대학교 건설환경공학과) ,  (공주대학교 건설환경공학과) ,  전민수 (공주대학교 건설환경공학과) ,  김이형 (공주대학교 건설환경공학과)

초록
AI-Helper 아이콘AI-Helper

최근 강우유출수를 비용효율적으로 관리하기 위해 저영향개발 (Low Impact Development, LID)과 자연기반해법(Nature-based solution, NBS)를 도입하고 있다. 본 연구에서는 LID 시설 중 도심지 내 적용가능하고 유입부에 침강지가 조성된 침투도랑(IT)과 소규모 인공습지(SCW) 등 2개의 시설에 대해 효율성을 평가하였다. 효율성 평가는 장기간의 모니터링을 통한 자료를 이용하여 수행하였다. 분석결과 하절기 기간은 식생의 흡입 등의 생물학적 활동으로 인하여 SCW의 효율이 더 높았으나, 동절기 기간에는 식물의 고사로 인하여 IT의 효율이 더 높은것으로 분석되었다. 침강지 내 퇴적물의 분석결과 SCW 침강지 내 식생에 의한 정화작용 및 미생물등의 생물학적 처리기작으로 인하여 COD와 TN의 저감효율이 높은것으로 분석되었다. 본 연구에서는 침강지 시설을 조성한 LID 시설에 대해 비교하였으며, 자연과 유사한 자연기반해법을 LID 시설에 적용할 경우 기존 시설보다 처리효율이 우수한것으로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

Recently, Low impact development techniques, a form of nature-based solutions (NBS), were seen cost-efficient alternatives that can be utilized as alternatives for conventional stormwater management practices. This study evaluated the effectiveness of an infiltration trench (IT) and a small construc...

주제어

표/그림 (9)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • , 2019). This study evaluated the effectiveness of IT and SCW in treating urban stormwater runoff. Vegetated and non-vegetated LID facilities were compared to evaluate their respective pollutant removal performances in relation to climatologic variations.
  • However, the biological processes of vegetated systems were more susceptible so seasonal changes. This study presented brief comparison of LID facilities with pre-treatment mechanisms. The identified factors that can potentially affect the performance of the systems were also beneficial in establishing metrics on the utilization of similar types of nature-based stormwater management practices.
본문요약 정보가 도움이 되었나요?

참고문헌 (41)

  1. Ali, H., Khan, E., & Sajad, M. (2013). Phytoremediation of heavt metals - Concepts and applications. Chemosphere, 869-881. doi:10.1016/j.chemosphere.2013.01.075 

  2. Alias, N., Liu, A., Goonetilleke, A., & Egodawatta, P. (2014). Time as the critical factor in the investigation of the relationship between pollutant wash-off and rainfall characteristics. Ecological engineering, 301-305. doi:10.1016/j.ecoleng.2014.01.008 

  3. Alihan J. C., Flores, P.E., Geronimo, F.K. F., Kim, L.H. (2018). Evaluation of a small HSSF constructed wetland in treating stormwater runoff using SWMM. Desalination and water treatment, 123-129. doi: 10.5004/dwt.2018.21823 

  4. American Public Health Association; American Waterworks Association; Water Environment Federation. (1992). Standard Methods for the Examination of Water and Wastewater. Washington DC: American Public Health Association. 

  5. Carter, M., & Gregorich, E. (2006). Spoil Sampling and Methods of Analysis. Boca Raton: CRC Press. 

  6. Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science. doi:10.1155/2014/752708 

  7. Choi, J., Lee, O., Lee, J., & Kim, S. (2019). Estimation of stormwater interception ratio for evaluating LID facilities performance in Korea. Membrane and Water Treatment, 19-28. doi:10.12989/mwt.2019.10.1.019 

  8. Farraji, H., Zaman, N. Q., Tajuddin, R. M., & Faraji, H. (2016). Advantages and disadvantages of phytoremediation: A concise review. Int J Env Tech Sci, 69-75. 

  9. Gill, L. W., Ring, P., Higgins, N. M., & Johnston, P. M. (2014). Accumulation of heavy metals in a constructed wetland treating road runoff. Ecological Engineering, 133-139. doi:10.1016/j.ecoleng.2014.03.056 

  10. Guerra, H. B., Yu, J., & Kim, Y. (2018). Variation of Flow and Filtration Mechanisms in an Infiltration Trench. Journal of Wetlands Research, 63-71. doi: 10.17663/JWR.2018.20.1.063 

  11. Guo, Y. & Gao, T. (2016). Analytical equations for estimating the total runoff reduction efficiency of infiltration trenches. Journal of Sustainable Water in Built Environment, 06016001. doi:10.1061/jswbay.0000809 

  12. Hamel, P., Daly, E., & Fletcher, T. D. (2013). Source-control stormwater management for mitigating the mpacts of urbanisation on baseflow: A review. Journal of Hydrology, 201-211. doi:10.1016/j.jhydrol.2013.01.001 

  13. Houle, J. J., Roseen, R. M., & Ballestero, T. P. (2013). Comparison of Maintenance Cost, Labor Demands, and System Performance for LID and Conventional Stormwater Management. Journal of Environmental Engineering, 932-938. doi:10.1061/(ASCE)EE.1943-7870.0000698 

  14. International Union for Conservation of Nature. (n.d.). IUCN, International Union for Conservation of Nature. Retrieved July 19, 2018, from IUCN, International Union for Conservation of Nature: https://www.iucn.org/ 

  15. Jeelani, N., Yang, W., Xu, L., Qiao, Y., An, S., & Leng, X. (2017). Phytoremediation potential of Acorus calamus in soils co-contaminated with cadmium and polycyclic aromatic hydrocarbons. Scientific reports, 8028. doi:10.1038/s41598-017-07831-3 

  16. Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., et al. (2018). The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of the Total Environment, 997-1009. doi:10.1016/j.scitotenv.2017.08.077 

  17. Kim, L. H., Kang, H. M., & Bae, W. (2010). Treatment of particulates and metals from highway stormwater runoff using zeolite filtration. Desalination and Water Treatment, 97-104. doi: 10.5004/dwt.2010.1901 

  18. Kumar, M., Furumai, H., Kurisu, F., & Kasuga, I. (2013). Tracing source and distribution of heavy metals in road dust, soil and soakaway sediment through speciation and isotopic fingerprinting. Geoderma, 8-17. doi:10.1016/j.geoderma.2013.07.004 

  19. Li, D., Wan, J., Ma, Y., Wang, Y., Huang, M., & Chen, Y. (2015). Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City. PloS ONE. doi:10.1371/journal.pone.0118776 

  20. Li, H. (2015). Green Infrastructure for Highway Stormwater Management: Field Investigation for Future Design, Maintenance, and Management Needs. Journal of Infrastructure Systems, 05015001. doi:10.1061/(ASCE)IS.1943-555X.0000248 

  21. Li, Y. C., Zhang, D. Q., & Wang, M. (2017). Performance Evaluation of a Full-Scale Constructed Wetland for Treating Stormwater Runoff. CLEAN-Soil, Air, Water, 1600740. doi:10.1002/clen.201600740 

  22. Liu, J., Sample, D. J., Bell, C., & Yuntao, G. (2014). Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water, 1069-1099. doi: 10.3390/w6041069 

  23. Loganathan, P., Vigneswaran, S., & Kandasamy, J. (2013). Road-deposited sediment pollutants: a critical review of their characteristics, source apportionment, and management. Critical reviews in environmental science and technology, 1315-1348. doi:10.1080/10643389.2011.644222 

  24. Ma, Y., Egodawatta, P., McGree, P., Liu, J., & Goonetilleke, A. (2016). Human health risk assessment of heavy metals in urban stormwater. Science of the Total Environment, 764-772. doi:10.1016/j.scitotenv.2016.03.067 

  25. Mangangka, I. R., Liu, A., Egodawatta, P., & Goonetilleke, A. (2015). Sectional analysis of stormwater treatment performance of a constructed wetland. Ecological Engineering, 172-179. doi:10.1016/j.ecoleng.2015.01.028 

  26. Maniquiz, M. C. (2012). Low Impact Development (LID) Technology for Urban Stormwater Runoff Treatment - Monitoring, Performance, and Design. Cheonan: Kongju National University. 

  27. Maniquiz-Redillas, M. C., & Kim, L.-H. (2016). Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff. Environmental Technology, 2265-2272. doi:10.1080/09593330.2016.1147610 

  28. Mercado, J. M., Maniquiz-Redillas, M. C., & Kim, L.-H. (2015). Laboratory study on the clogging potential of a hybrid best management practice. Desalination and Water Treatment, 3126-3133. doi:10.1080/19443994.2014.922287 

  29. Roseen, R. M., Ballestero, T. P., Houle, J. J., & Pedro, A. (2009). Seasonal Perofirmance Variations for Storm-Water Management Systems in Cold Climate Conditions. Journal of Environmental Engineering, 128-137. doi:10.1061/(ASCE)0733-9372(2009)135:3(128) 

  30. Segismundo, E. Q., Lee, B.-S., Kim, L.-H., & Koo, B.-H. (2016). Evaluation of the Impact of Filter Media Depth on Filtration Performance and Clogging Formation of a Stormwater Sand Filter. Journal of Korean Society on Water Environment, 36-45. doi:10.15681/KSWE.2016.32.1.36 

  31. Sidhu, J. P., Ahmed, W., Gernjak, W., Aryal, R., McCarthy, D., Palmer, A., et al. (2013). Sewage pollution in urban stormwater runoff as evident from thewidespread presence of multiple microbial and chemical source tracking markers. Science of Total Environment, 488-496. doi:10.1016/j.scitotenv.2013.06.020 

  32. Sun, H., Wang, Z., Gao, P., & Peng, L. (2013). Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta physiologiae plantarum, 355-364. doi:10.1007/s11738-012-1078-8 

  33. USEPA. (1999). Stormwater Technology Fact Sheet: Infiltration Trench. Washington, D.C.: USEPA. 

  34. Vymazal, J. (2013). Emergent plants used in free water surface constructed wetlands: A review. Ecological Engineering, 582-592. doi: 10.1016/j.ecoleng.2013.06.023 

  35. Wijesiri, B., Egodawatta, P., McGree, J., & Goonetilleke, A. (2016). Understanding the uncertainty associated with particle-bound pollutant build-up and wash-off: A critical review. Water Research, 582-596. doi:10.1016/j.watres.2016.06.013 

  36. Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., et al. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology, 594-601. doi:10.1016/j.biortech.2014.10.068 

  37. Yiping, G., & Gao, T. (2016). Analytical Equations for Estimating the Total Runoff Reduction Efficiency of Infiltration Trenches. Journal of Sustainable Water in the Built Environment, 06016001. doi: 10.1061/JSWBAY.0000809 

  38. Yuan, Q., & Kim, Y. (2018). Analysis of the particulate matters in the vertical-flow woodchip wetland. Journal of Wetlands Research, 145-154. doi: 10.17663/JWR.2018.20.2.145 

  39. Zahmatkesh, Z., Burian, S. J., Karamouz, M., Tavakol-Davani, H., & Goharian, E. (2014). Low-Impact Development Practices to Mitigate Climate Change Effects on Urban Stormwater Runoff: Case Study of New York City. Journal of Irrigation and Drainage Engineering, 04014043. doi: 10.1061/(ASCE)IR.1943-4774.0000770 

  40. Zhao, Y., Liu, B., Zhang, W., Weijing, K., Hu, C., & An, S. (2009). Comparison of the Treatment Performances of High-strength Wastewater in Vertical Subsurface Flow Constructed Wetlands Planted with Acorus calamus and Lythrum salicaria. Journal of Health Science, 757-766. doi: 10.1248/jhs.55.757 

  41. Zhu, H., Yan, B., Xu, Y., Jiunian, G., & Shuyuan, L. (2014). Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios. Ecological Engineering, 58-63. doi: 10.1016/j.ecoleng.2013.12.018 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로