$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

경기육괴 서부 당진지역의 중생대 화성활동에 대한 연구
A study on the Mesozoic Magmatism in the Dangjin Area, Western Gyeonggi Massif, Korea 원문보기

암석학회지 = The journal of the petrological society of korea, v.28 no.2, 2019년, pp.85 - 109  

이상봉 (한국해양과학기술원 부설 극지연구소) ,  오창환 (전북대학교 지구환경과학과 및 지구환경시스템 연구소) ,  최선규 (고려대학교 지구환경과학과) ,  서지은 (고려대학교 지구환경과학과)

초록
AI-Helper 아이콘AI-Helper

경기육괴 서부 당진지역에서는 흑운모 화강암, 우백질 화강암류, 화강섬록암, 각섬석 반려암, 석영 반려암, 토날라이트 등의 중생대 화성암이 확인된다. 당진지역의 중생대 주요 화성활동 시기는 ~227 Ma, ~190 Ma, ~185 Ma, ~175 Ma로 나타난다. 반려암류는 함수광물인 각섬석의 함량이 높게 나타나는 각섬석 반려암과 석영 반려암으로 주로 구성된다. 이들은 소규모 암주 상으로 연구지역 전역에서 관찰되고, 관입 시기는 185~175 Ma로 확인된다. 트라이아스기 흑운모 화강암($225{\pm}2.3Ma$)은 남부의 해미화강암($233{\pm}2Ma$, Choi et al., 2009)과 지화학적 성격이 유사한 충돌 후 화성암으로 판단된다. 흑운모 화강암의 주요 마그마 근원물질은 화강암질 대륙지각이지만, 이 암체가 소량의 고철질암을 마그마 근원물질로 갖거나 원시 마그마 형성 시소량의 맨틀 용융물(고철질 맬트)이 성분으로 기여했을 가능성이 있다. 쥐라기 화강암류와 반려암류는 고태평양판의 섭입과 관련되어 형성된 대륙호 화성암으로 판단된다. 우백질 화강암류는 화강암질 대륙지각의 용융에 의해, 반려암류는 부화된 맨틀의 부분용융에 의해 형성된 것으로 추론된다.

Abstract AI-Helper 아이콘AI-Helper

Various Mesozoic igneous rocks such as biotite granite, leucogranites, granodiorite, hornblende gabbros, quartz gabbros and tonalite are identified in the Dangjin area, the western Gyeonggi Massif, Korea. The major Mesozoic igneous activities in the Dangjin area are recognized as periods of ca. 227 ...

주제어

표/그림 (14)

질의응답

핵심어 질문 논문에서 추출한 답변
당진지역의 각섬석 반려암은 어디에서 확인되는가? 당진지역 반려암류는 각섬석 반려암, 석영 반려암, 고철질 미립 포유암이다. 각섬석 반려암은 흑운모 화강암과 흑운모 편마암을 관입하고 면천면 대치리, 자개리, 아미산, 이배산, 순성면 거문들(이상 당진시), 봉산면 금치리(예산군) 등지에서 암주 상으로 확인된다(Figs. 1, 2g-h; Lee, S.
한반도에서 중생대 화성암의 주요 형성시기는? 중생대 화성암은 한반도 면적의 약 40%를 차지하는 다수의 암체이고 한반도 전역에서 고르게 산출된다. 한반도에서 중생대 화성암의 주요 형성 시기는 트라이아스기(230~215 Ma), 쥐라기(198~165 Ma), 백악기-고제3기(110~50Ma)로 나타나는데, 각 시기별 형성 요인은 지역(지괴)에 따라 상이한 다소 복잡한 양상으로 해석되고 있다(Sagong et al., 2005; Cheong and Kim, 2012 and references therein; Kim et al.
당진지역에서 발견된 암상들은? , 2016). 당진지역에서는 흑운모 화강암, 우백질 화강암류, 화강섬록암, 각섬석 반려암, 석영 반려암, 토날라이트 등 다양한 암상들이 이번 연구를 통해 조사되었지만, 기존 보고에서 이들 암상들의 분포가 지역적으로나 시기적으로 잘 분별되어 정리되지 않았다. 당진지역에서 나타나는 규장질에서 고철질의 다양한 암상의 존재와 경기육괴 내에서의 다양한 화성활동 시기 등을 고려할 때, 당진지역에 대한 암상을 세분화하고 이들을 보다 정밀하게 지도화할 필요성이 제기된다.
질의응답 정보가 도움이 되었나요?

참고문헌 (81)

  1. Barbarin, B. and Didier, J., 1992, Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Transactions of the Royal Society of Edinburgh: Earth Science, 76, 63-74. 

  2. Castro, A., Corretge, L.G., Rosa, J.D.D., Fernandez, C., Lopez, S., Garcia-Moreno, O. and Chacon, H., 2003, The appinite-migmatite complex of Sanabria, NW Iberian Massif, Spain. Journal of Petrology, 44, 1309-1344. 

  3. Cheong, C.-s. and Kim, N., 2012, Review of radiometric ages for Phanerozoic granitoids in southern Korean Peninsula. Journal of the Petrological Society of Korea, 21, 173-192. 

  4. Cheong, C.-S., Kim, N., Jo, H.J., Cho, M., Choi, S.H., Zhou, H. and Geng, J.-z., 2015, Lithospheric mantle signatures as revealed by zircon Hf isotopes of Late Triassic post-collisional plutons from the central Korean peninsula, and their tectonic implications. Terra Nova, 27, 97-105. 

  5. Cheong, A.C., Jo, H.J., Jeong, Y.J. and Li, X.-H., 2018, Magmatic response to the interplay of collisional and accretionary orogenies in the Korean Peninsula: Geochronological, geochemical, and O-Hf isotopic perspectives from Triassic plutons. Geological Society of America Bulletin, 131, 609-634. 

  6. Cho, D.-L., Kim, Y.-J. and Amstrong, R., 2006, SHRIMP U-Pb geochronology of detrital zircons from iron-bearing quartzite of the Seosan Group: Constraints on age and stratigraphy. Journal of the Petrological Society of Korea, 15, 119-127. 

  7. Cho, M., Na, J. and Yi, K., 2010, SHRIMP U-Pb ages of detrital zircons in metasandstones of the Taean Formation, Western Gyeonggi massif, Korea: Tectonic implications. Geosciences Journal, 14, 187-214. 

  8. Choi, S.-G., Rajesh, V.J., Seo, J., Park, J.-W., Oh, C.W., Pak, S.-J. and Kim, S.W., 2009, Petrology, geochronology and tectonic implications of Mesozoic high Ba-Sr granites in the Haemi area, Hongseong Belt, South Korea. Island Arc, 18, 266-281. 

  9. Choi, S.J., Kee, W.-S., Koh, H.J., Kwon, C.W., Kim, B.C., Kim, S.W., Kim, Y.B., Kim, Y.H., Kim, H., Park, S.-I., Song, K.-Y., Yeon, Y.K., Lee, S.R., Lee, S.S., Lee, S.R., Lee, Y.S., Lee, H.-J., Cho, D.-L., Choi, P.-y., Han, J.G., Han, H.J., Hwang, J.-h., Ko, K.T. and Kwon, S., 2013, Technical development of tectonic evolution and geological information construction (GP2011-004-2013(2)). Korea Institute of Geoscience and Mineral Resources, 376p. 

  10. Choi, S.J., Kee, W.-S., Ko, K., Koh, H.J., Kwon, C.W., Kim, B.C., Kim, S.W., Kim, Y.B., Kim, Y.H., Kim, H., Park, S.-I., Song, K.-Y., Yeon, Y.K., Lee, S.R., Lee, S.S., Lee, S.R., Lee, Y.S., Lee, H.-J., Cho, D.-L., Choi, P.-y., Han, J.G., Han, H.J., Hwang, J.-h., Park, J.E., Lee, T.H., Kwon, S. and Choi, T.J., 2014, Technical development of tectonic evolution and geological information construction (GP2011-004-2014(3)). Korea Institute of Geoscience and Mineral Resources, 426p. 

  11. Conticelli, S. and Peccerillo, A., 1992, Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: petrogenesis and inferences on the evolution of the mantle sources. Lithos, 28, 221-240. 

  12. Dai, L.-Q., Zhao, Z.-F., Zheng, Y.-F. and Zhang, J., 2015a, Source and magma mixing processes in continental subduction factory: Geochemical evidence from postcollisional mafic igneous rocks in the Dabie orogen. Geochemisty, Geophysics, Geosystems, 16, 659-680. 

  13. Dai, L.-Q., Zhao, Z.-F. and Zheng, Y.-F., 2015b, Tectonic development from oceanic subduction to continental collision: Geochemical evidence from postcollisional mafic rocks in the Hong'an-Dabie orogens. Gondwana Research, 27, 1236-1254. 

  14. Elliott, T., Plank, T., Zindler, A., White, W. and Bourdon, B., 1997, Element transport from slab to volcanic front at the Mariana Arc. Journal of Geophysical Research, 102, 14991-15019. 

  15. Flower, M.B., 1988, Ach'uaine hybrid appinite pipes: evidence for mantle-derived shoshonitic parent magmas in Caledonian granite genesis. Geology, 16, 1026-1030. 

  16. Flower, M.B. and Henrry, P.J., 1996, Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba-Sr granite genesis. Contribution to Mineralogy and Petrology, 126, 199-215. 

  17. Fraser, K.J., Hawkesworth, C.J., Erlank, A.J., Mitchell, R.H. and ScottSmith, B.H., 1985, Sr-Nd-Pb isotope and minor element geochemistry of lamproites and kimberites. Earth and Planetary Science Letters, 56, 445-456. 

  18. Guo, F., Fan, W., Li, C., Wang, C.Y., Li, H., Zhao, L. and Li, J., 2014, Hf-Nd-O isotopic evidence for melting of recycled sediments beneath the Sulu Orogen, North China. Chemical Geology, 381, 243-258. 

  19. Hawkesworth, C.J., Turner, S.P., McDermott, F., Peate, D.W. and van Calsteren, P., 1997, U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276, 551-555. 

  20. Ireland, T.R. and Williams, I.S., 2003, Considerations in zircon geochronology by SIMS. In Zircon (eds. Hanchar, J.M. and Hoskin, P.W.O.), Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, 53, 215-241. 

  21. Ivrine, T.N. and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-548. 

  22. Johnson, M.C. and Plank, T., 1999, Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry Geophysics Geosystems, 1, 1999GC000014. 

  23. Kee, W.-S., Kim, H., Lee, H.-J., Park, S.-I., Cho, D.-L. and Kim, S.W., 2011, Geological map of Gyeonggi massif, Korea (SHRIMP U-Pb zircon age, 1:500,000 scale), Korea Institute of Geoscience and Mineral Resources. 

  24. Kelemen, P.B., Rilling, J.L., Parmentier, E.M., Mehl, L. and Hacker, B.R., 2003, Thermal structure due to solid-state flow in the mantle wedge beneath arcs. In Inside the subduction factory (eds. Eiler, J. E.), American geophysical Union, Geophysical Monograph, 138, Washington DC, 293-311. 

  25. Kim, J.-S., Kim, K.-K., Jwa, Y.-J. and Son, M., 2012, Cretaceous to early Tertiary granites and magma mixing in South Korea: Their spatio-temporal variations and tectonic implications (multiple slab window model). The Journal of the Petrological Society of Korea, 21, 203-216. 

  26. Kim, S.W., Williams, I.S., Kwon, S. and Oh, C.W., 2008, SHRIMP zircon geochronology, and geochemical charateristics of metaplutonic rocks from the south-western Gyeonggi Block, Korea: Implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Precambrian Research, 162, 475-497. 

  27. Kim, S.W., Kwon, S., Koh, H.J., Yi, K., Jeong, Y.-J. and Santosh, M., 2011, Geotectonic framework of Permo-Triassic magmtism within the Korean Peninsula. Gondwana Research, 20, 865-889. 

  28. Kim, S.W., Kwon, S., Ko, K., Yi. K., Cho, D.-L., Kee, W.-S., Kim, B.C., 2015, Geochronological and geochemical implications of Early to Middle Jurassic continental adakitic arc magmatism in the Korean Peninsula. Lithos, 227, 225-240. 

  29. Kim, T.S., Oh, C.W. and Kim, J., 2011, The characteristic of mangerite and gabbro in the Odesan area and its meaning to the Triassic tectonics of Korean Peninsula. The Journal of the Petrological Society of Korea, 20, 77-98. 

  30. Kuno, H., 1966, Lateral variation of basalt magma types across continental margins and island arcs. Bulletin of Volcanology, 29, 195-222. 

  31. Lee, B.-J., Kim, D.-H., Choi, H.-I., Kee, W.-S. and Park, K.,-H., 1996, Explanatory note of the Daejeon sheet (1:250,000), Korea Institute of Geology, Mining and Materials (KIGAM), 59p. 

  32. Lee, B.-J., Kim, Y.B., Lee, S.R., Kim, J.C., Kang, P.J., Choi, H.I. and Jin, M.S., 1999, Explanatory note of the Seoul-Namchonjeom sheet (1:250,000), Korea Institute of Geology, Mining and Materials (KIGAM), 64p. 

  33. Lee, B.Y., 2017, The tectonic history of the Imjingang belt and Dangjin-Haemi area from Neoproterozoic to Triassic. Master Dissertation, Chonbuk National University, 118p. 

  34. Lee, S.M., Kim, H.S., Na, K.C. and Park, B.Y., 1989, Geological report of the Tangjin.Changgohang sheet (1:50,000). Korea Institute of Energy and Resources, 15p. 

  35. Liu, S., Feng, C., Hu, R., Zhai, M., Gao, S., Lai, S., Yan, J., Coulson I.M. and Zou, H., 2015, Zircon U-Pb geochronological, geochemical, and Sr-Nd isotope data for Early Cretaceous mafic dykes in the Tancheng-Lujiang Fault area of the Shandong Province, China: Constraints on the timing of magmatism and magma genesis. Journal of Asian Earth Sciences, 98, 247-260. 

  36. Ludwig, K.R., 2003, Users manual for Isoplot/Ex version 3.0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4, Berkeley, California, 70p. 

  37. Maruyama, S., Isozaki, Y., Kimura, G. and Terabayashi, M., 1997, Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. The Island Arc, 6, 121-142. 

  38. McCulloch, M.T. and Gamble, J.A., 1991, Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102, 358-374. 

  39. McCulloch, M.T., Jacques, A.L., Nelson, D.R. and Lewis, G.D., 1983, Nd and Sr isotopes in kimberites and lamproites from Western Australia: An enriched mantle origin. Nature, 302, 400-403. 

  40. McDonald, G.A., 1968, Composition and origin of Hawaiian lavas. In Studies in volcanology: a memoir in honour of Howel Williams (eds. Coats, R.R., Hay, R.L., and Anderson, C.A.), Geological Society of American Memoirs, 116, 477-522. 

  41. Mcdonald, G.A. and Kstsura, T., 1964, Chemical composition of Hawaiian lavas. Journal of Petrology, 5, 83-133. 

  42. Middlemost, E.A.K., 1994, Naming materials in the magma/igneous rock system. Earth Science Reviews, 37, 215-224. 

  43. Molina, J.F., Montero, P., Bea, F. and Scarrow, J.H., 2012, Anomalous xenocryst dispersion during tonalite-granodiorite crystal mush hybridization in the mid crust : Mineralogical and geochemical evidence from Variscan appinites (Avila Batholith, Central Iberia). Lithos, 153, 224-242. 

  44. Murphy, J.B., 2013, Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magma. Earth-Science Reviews, 119, 35-59. 

  45. Murphy, J.B., Hynes, A.J. and Cousens, B., 1997, Tectonic influence on late Proterozoic Avalonian magmatism: an example from Greendale Complex, Antigonish Highlands, Nova Scotia, Canada. In The nature of magmatism in the Appalachian orogen (eds. Sinha, A.K., Whalen, J.B. and Hogan, J.P.), Geological Survey of America Memoir, 191, 255-274. 

  46. Na, K.C., Kim, H.S., Lee, S.H., 1982, Stratigraphy and metamorphism of Seosan Group, Journal of the Korean Institute of Mining Geology, 15, 33-39. 

  47. Nelson, D.R., 1992, Isotopic characteristics of potassic magmas: evidence for the involvement of subducted sediments in magma genesis. Lithos, 28, 403-420. 

  48. Oh, C.W., 2012, The tectonic evolution of South Korea and northeast Asia from Paleoproterozoic to Triassic. The Journal of the Petrological Society of Korea, 21, 59-87. 

  49. Oh, C.W. and Kusky, T.M., 2007, The Late Permian to Triassic Hongseong-Odesan collision belt in South Korea, and its tectonic correlation with China and Japan. International Geology Review, 49, 639-657. 

  50. Oh, C.W., Kim, S.W., Choi, S.G., Zhai, M., Guo, J. and Sajeev, K., 2005, First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu Collision Belt in China. Journal of Geology, 113, 226-232. 

  51. Oh, C.W., Imayama, T., Yi, S.-B., Kim, T., Ryu, I.-C., Jeon, J. and Yi, K., 2014, Middle Paleozoic metamorphism in the Hongseong area, South Korea, and tectonic significance for Paleozoic orogeny in northeast Asia. Journal of Asian Earth Sciences, 95, 203-216. 

  52. Oh, C.W., Imayama, T., Jeon, J. and Yi, K., 2017, Regional Middle Paleozoic metamorphism in the southwestern Gyeonggi Massif, South Korea: Its implications for tectonics in Northeast Asia. Journal of Asian Earth Sciences, 145, 542-564. 

  53. Park, K.-H., 2012, Cyclic igneous activities during the late Paleozoic to early Cenezoic period over the Korean Peninsula. Journal of the Petrological Society of Korea, 21, 193-202. 

  54. Park, K.-H., Kim, M.J., Yang, Y.S. and Cho, K.O, 2010, Age distribution of the Jurassic plutons in Korean Peninsula. Journal of the Petrological Society of Korea, 19, 269-281. 

  55. Patino Douce, A.E., 1997, Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25, 743-746. 

  56. Patino Douce, A.E., 1999, What do experiements tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In Understanding granites: Integrating new and classical techniques (eds. Castro, A., Fernandez, C. and Vigneresse, J.L.), The Geological Society of London, Special Publication, 168, 55-75. 

  57. Pearce, J.A., 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14-48. 

  58. Peccerillo, A. and Taylor, S.R., 1976, Geochemistry of Eocene calc-alkaline volcanic rocks in the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81. 

  59. Pons, J., Barbey, P., Nachit, H. and Burg, J.-P., 2006, Development of igneous layering during growth of pluton: The Tarcouate laccolith (Morocco). Tectonophysics, 413, 271-286. 

  60. Rudnick, R.L. and Gao, S., 2003, Composition of the continental crust. In Treatise on geochemistry 3: The crust (eds. Rudnick, R.L.), Elsevier-Pergamon, Oxford, 1-64. 

  61. Sagong, H., Kwon, S.-T. and Ree, J.-H., 2005, Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, 24, TC5002, doi:10.1029/2004TC001720. 

  62. Scarrow, J.H., Molina, J.F., Bea, F. and Montero, P., 2009, Within-plate calc-alkaline rocks: Insights from alkaline mafic magma-peraluminous crustal melt hybrid appinites of the Central Iberian Variscan continental collision. Lithos, 110, 50-64. 

  63. Seo, J., Choi, S.-G. and Oh, C.W., 2010, Petrology, geochemistry, and geochronology of the post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, South Korea. Gondwana Research, 18, 479-496. 

  64. Shin, B.W., So, C.S., Park, B.H. and Lee, S.H., 1989, Geological report of Haemi sheet (1:50,000). Geological and Mineral Institute of Korea, 15p. 

  65. Su, Y., Zheng, J., Griffin, W.L., Zhao, J., Tang, H., Ma, Q. and Lin, X., 2012, Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: Implication for a tectonic transition. Gondwana Research, 22, 1009-1029. 

  66. Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematic of oceanic basalt: implications for mantle composition and processes. In Magmatism in the ocean basins (eds. Saunders, A.D. and Norry, M.J.), Geological Society Special Publication 42, The Geological Society of London, 313-345. 

  67. Whitford, D.J., Nicholls, I.A. and Taylor, S.R., 1983, Spatial variations in the geochemistry of Quaternary lavas across the Sunda Arc in Java and Bali. Contribution to Mineralogy and Petrology, 70, 341-356. 

  68. Wiebe, R.A., 1993, The Pleasant Bay layered grabbro-diorite, coastal Maine: Ponding and crystallization of basaltic injections into a silicic magma chamber. Journal of Petrology, 34, 461-489. 

  69. Wiebe, R.A., 2016, Mafic replenishments into floored silicic magma chambers. American Mineralogist, 101, 297-310. 

  70. Wiebe, R.A. and Collins, W.J., 1998, Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. Journal of Structural Geology, 20, 1273-1289. 

  71. Williams, I.S., 1998, U-Th-Pb geochronology by ion microprobe. In Applications of microanalytical techniques to understanding mineralizing processes (eds. McKibben, M.A., Shanks, W.C.P. and Ridley, W.I.), Reviews in Economic Geology, 7, 1-35. 

  72. Williams, I.S., Cho, D.L. and Kim, S.W., 2009, Geochronology, and geochemical and Nd-Sr characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: constraints on Triassic post-collisional magmatism. Lithos, 107, 239-256. 

  73. Yang, D.-B, Xu, W.-L., Pei, F.-P., Yang, C.-H. and Wang, Q.-H., 2012, Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr-Nd-Pb isotopes in Mesozoic mafic igneous rocks. Lithos, 136-139, 246-260. 

  74. Yang, J.-H., Chung, S.L., Zhai, M.G. and Zhou, X.H., 2004, Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73, 145-160. 

  75. Yi, S.-B., 2010, Petrological and mineralogical study of Jurassic mafic intrusive rocks related to the magma mixing/mingling processes: Focussed on the Dangjin area. Master Dissertation, Korea University, 109p. 

  76. Yi, S.-B., Oh, C.W., Lee, S.-Y., Choi, S.-G., Kim, T. and Yi, K., 2016, Triassic mafic and intermediate magmatism associated with continental collision between the North and South China Cratons in the Korean Peninsula. Lithos, 246-247. 149-164. 

  77. Zhai, M.G., Zhang, Y.B., Zhang, X.H., Wu, F.Y., Peng, P., Li, Q.L., Hou, Q.L., Li, T.S. and Zhao, L., 2016, Renewed profile of the Mesozoic magmatism in Korean Peninsula: Regional correlation and broader implication for cratonic destruction in the North China Craton. Science China Earth Science, 59, 2355-2388. 

  78. Zhang, H.-F., 2007, Temporal and spatial distribution of Mesozoic mafic magmatism in the North China Craton and implications for secular lithospheric evolution. In Mesozoic sub-continental lithospheric thinning under Eastern Asia (eds. Zhai, M.-G., Windley, B.F., Kusky, T.M. and Meng, Q.R.), Geological Society Special Publication 280, The Geological Society of London, 35-54. 

  79. Zhao, G., Sun, M., Wilde, S.A. and Li, S., 2005, Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 137, 149-172. 

  80. Zhao, Z.F., Dai, L.Q. and Zheng, Y.F., 2015, Two types of the crust-mantle interaction in continental subduction zones. Science China: Earth Sciences, 58, 1269-1283. 

  81. Zhong, Y., Ma, C., Liu, L., Zhao, J., Zheng, J., Nong, J. and Zheng, Z., 2014, Ordovician appinites in the Wugongshan Domain of the Cathaysia Block, South China: Geochronological and geochemical evidence for intrusion into a local extensional zone within an intracontinental regime. Lithos, 198-199, 202-216. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로