$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

탄소강화 탄소나노튜브 섬유 복합소재 연구 동향
A Review of Carbon-Reinforced Carbon Nanotube Fibers Composites 원문보기

Composites research = 복합재료, v.32 no.3, 2019년, pp.127 - 133  

이동주 (Carbon Composite Materials Research Center, Korea Institute of Science and Technology) ,  류성우 (Department of Advanced Materials Science and Engineering, The University of Suwon) ,  구본철 (Carbon Composite Materials Research Center, Korea Institute of Science and Technology)

초록
AI-Helper 아이콘AI-Helper

탄소나노튜브는 이론적인 기계적, 전기적 물성이 우수함에도 불구하고 아직까지 그 수준에 도달하고 있지 않다. 특히나 인장 강도는 10% 미만의 수준 정도에 그치고 있어 이를 보안하기 위한 연구가 활발히 진행되고 있다. 기계적 강도를 향상하기 위한 방법으로는 긴 탄소나노튜브의 합성, 배향 외에 화학적 가교, 수소결합, 고분자 함침 등의 방법이 연구되고 있다. 본 총설 논문에서는 탄소소재의 전구체인 폴리아크릴로니트릴(PAN), 폴리도파민(PDA)을 탄소나노튜브 섬유에 코팅 또는 함침하여 탄화 공정을 거쳐 고강도 고전도성 탄소나노튜브 섬유/탄소 복합소재를 제조하는 연구를 소개하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Although carbon nanotubes(CNTs) have outstanding theoretical mechanical and electrical properties, CNT fibers(CNTFs) have not yet reached that level. Particularly, tensile strength is only about 10% or less, so studies for making up for it are being actively conducted. As a way for improving mechani...

주제어

표/그림 (13)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 탄소섬유의 고강도화를 위해서는 개별 CNT를 길이가 긴 CNT로 합성하는 것이 중요하다[10]. 길이가 긴 CNT는 합성 부분에서 해결할 부분으로 본 논문에서는 이를 제외하고 합성된 CNTF를 고강도화 하는 방법에 대해 주로 논의하고자 한다. 합성된 CNTF를 고강도화 하는 방법에는 개별 탄소나노튜브의 기능화에 의한 수소결합[15,16], 화학 가교[17-23], 고분자 함침[24-29], 탄소복합소재[30-34] 등이 있다.
  • 합성된 CNTF를 고강도화 하는 방법에는 개별 탄소나노튜브의 기능화에 의한 수소결합[15,16], 화학 가교[17-23], 고분자 함침[24-29], 탄소복합소재[30-34] 등이 있다. 본 논문에서는 그 중에서도 탄소나노튜브 섬유에 탄소 소재의 전구체 고분자를 함침한 후 열처리를 통해 탄소-탄소 복합소재화하는 연구 결과에 대해 보고하고자 한다. 특히나 이 방법의 경우는 기계적 강도뿐만 아니라 전기전도 도도 동시에 향상시킬 수 있는 것으로 알려져 있다.
  • 본 총설 논문에서는 탄소소재의 전구체 고분자를 CNTF에 함침 및 코팅하여 열처리를 통해 탄소-탄소 복합소재화 하며 강도와 탄성률을 모두 향상시키는 방법을 소개하였다. Table 2에 요약된 것 처럼, 여러 방법중 PDA를 함침시켜 탄화공정을 거친 경우가 강도, 탄성률, 전기전도도가 가장 우수하였다.
  • 특히나 이 방법의 경우는 기계적 강도뿐만 아니라 전기전도 도도 동시에 향상시킬 수 있는 것으로 알려져 있다. 탄소전구체 고분자로는 탄소섬유 전구체인 폴리아크릴로니트릴(PAN) 외에 폴리도파민(PDA), Resorcinol-Formaldehyde (RF) 등을 보고하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
탄소나노튜브 섬유(carbon nanotube fibers: CNTF)는 무엇인가? 이러한 탄소나노튜브를 고분자와 복합체를 형성할 경우는 분산문제를 해결하기 위해 탄소나노튜브를 기능화하는 경우가 많으며 복합체의 물성은 개별 탄소나노튜브의 분산 상태에 좌우되는 경우가 많다. 탄소나노튜브 섬유(carbon nanotube fibers: CNTF)는 개별의 탄소나노튜브를 섬유 형태의 집합체로 제조한 것으로 고분자와 복합체를 제조할 경우 분산 문제가 없으며 탄소섬유처럼 구조용 복합소재로 적용 가능하다. CNTF는 2000년 초반부터 본격적으로 연구가 진행되어 오고 있으며 화학기상 증착법(CVD), 수직성장법(VACNT), 액정방사법 등의 방법으로 제조가 가능한 것으로 알려져 오고 있다[3-8].
CNTF의 제조방법은 어떤 것이 있는가? 탄소나노튜브 섬유(carbon nanotube fibers: CNTF)는 개별의 탄소나노튜브를 섬유 형태의 집합체로 제조한 것으로 고분자와 복합체를 제조할 경우 분산 문제가 없으며 탄소섬유처럼 구조용 복합소재로 적용 가능하다. CNTF는 2000년 초반부터 본격적으로 연구가 진행되어 오고 있으며 화학기상 증착법(CVD), 수직성장법(VACNT), 액정방사법 등의 방법으로 제조가 가능한 것으로 알려져 오고 있다[3-8].
탄소나노튜브 섬유에 탄소소재의 전구체 고분자를 함침한 후 열처리하면 어떠한 효과를 갖는가? 본 논문에서는 그 중에서도 탄소나노튜브 섬유에 탄소소재의 전구체 고분자를 함침한 후 열처리를 통해 탄소-탄소 복합소재화하는 연구 결과에 대해 보고하고자 한다. 특히나 이 방법의 경우는 기계적 강도뿐만 아니라 전기전도도도 동시에 향상시킬 수 있는 것으로 알려져 있다. 탄소전구체 고분자로는 탄소섬유 전구체인 폴리아크릴로니트릴(PAN) 외에 폴리도파민(PDA), Resorcinol-Formaldehyde(RF) 등을 보고하고자 한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (48)

  1. Ian, A.K., Suhr, J., Jun, L., Robert J.Y., and Pulickel, M.A., "Composites with Carbon Nanotubes and Graphene: An Outlook," Science, Vol. 362, No. 6414, 2018, pp. 547-553. 

  2. Sobia, I., Muhammad, S., Ayesha, K., Sedra, T.M., Jaweria, A., and Iram, B., "A Review Featuring Fabrication, Properties and Applications of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites," Nature, Vol. 358, 1992, pp. 220-222. 

  3. Brigitte, V., Alain, P., Claude, C., Cedric, S., Rene, P., Catherine, J., Patrick, B., and Philippe, P., "Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes," Science, Vol. 290, No. 5495, 2000, pp. 1331-1334. 

  4. Lars, M.E., Hua, F., Haiqing, P., Virginia, A.D., Wei, Z., Joseph, S., Yuhuang, W., Richard, B., Juraj, V., Csaba, G., Nicholas, G.P., Kim, M.J., Sivarajan, R., Rajesh, K.S., Carter, K., Gerry, L., Howard, S., Wade, A., Billups, W.E., Matteo, P., Hwang, W.F., Robert, H.H., John, E.F., and Richard, E.S., "Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers," Science, Vol. 305, 2004, pp. 1447-1450. 

  5. Mei, Z., Ken, R.A., and Ray, H.B., "Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology," Science, Vol. 306, 2004, pp. 1358-1361. 

  6. Li, Y.L., Ian, A.K., and Alan, H.W., "Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis," Science, Vol. 304, 2004, pp. 276-278. 

  7. Natnael B., Colin, C.Y., Dmitri, E.T., Olga, K., Xuan, W., Anson, W.K.M., Amram, B., Ron, F.W., Jorrit, J.J., Ron, E.H., Steven, B.F., John, B.F., Benji, M., Junichiro, K., Yeshayahu, T., Yachin, C., Marcin, J.O., and Matteo, P., "Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity," Science, Vol. 339, 2013, pp. 182-186. 

  8. Krzysztof, K., Juan, V., Anna, M., Marcelo, M., Philip, C., Michael, S., and Alan, W., "High-Performance Carbon Nanotube Fiber," Science, Vol. 318, 2007, pp. 1892-1895. 

  9. Manishkumar, D.Y., Kinshuk, D., Ashwin, W.P., and Jyeshtharaj, B.J., "High Performance Fibers from Carbon Nanotubes: Synthesis, Characterization and Applications in Composites - A Review," Industrial and Engineering Chemistry Research, Vol.56, Nol. 44, 2017, pp. 12407-12437. 

  10. Jiangtao, D., Xiaohua, Z., Zhenzhong, Y., Yongyi, Z., Da, L., Ru, L., and Qingwen, L., "Carbon-Nanotube Fibers for Wearable Devices and Smart Textiles," Advanced Materials, Vol. 28, No. 47, 2016, pp. 10529-10538. 

  11. Weibang, L., Mei, Z., Byun, J.H., Kim, B.S., and Tsu, W.C., "State of the Art of Carbon Nanotube Fibers: Opportunities and Challenges," Advanced Materials, Vol. 24, No. 14, 2012, pp. 1805-1833. 

  12. Choo, H., Jung, Y., Jeong, Y., Kim, H.C., and Ku, B.C., "Fabrication and Applications of Carbon Nanotube Fibers," Carbon Letters, Vol. 13, No. 4, 2012, pp. 191-204. 

  13. Choi, Y.M., Jung, J., Hwang, J.Y., Kim, S.M., Jeong, H., Ku, B.C., and Goh, M., "Advances in Liquid Crystalline Nano-carbon Materials: Preparation of Nano-carbon Based Lyotropic Liquid Crystal and Their Fabrication of Nano-carbon Fibers with Liquid Crystalline Spinning," Carbon Letters, Vol. 16, No. 4, 2015, pp. 223-232. 

  14. Enlai, G., Weibang, L., and Zhiping, X., "Strength Loss of Carbon Nanotube Fibers Explained in a Three-level Hierarchical Model," Carbon, Vol. 138, 2018, pp. 134-142. 

  15. Im, Y.O., Lee, S.H., Kim, T., Park, J., Lee, J., and Lee, K.H., "Utilization of Carboxylic Functional Groups Generated during Purification of Carbon Nanotube Fiber for Its Strength Improvement," Applied Surface Science, Vol. 392, 2017, pp. 342-349. 

  16. Park, O.K., Kim, W.Y., Kim, S.M., You, N.H., Jeong, Y., Lee, H.S., and Ku, B.C., "Effect of Oxygen Plasma Treatment on the Mechanical Properties of Carbon Nanotube Fibers," Material Letters, Vol. 156, 2015, pp. 17-20. 

  17. Yunxiang, G., Hongwei, C., Jun, G., Jingna, Z., Qingwen, L., Jianxin, T., Yi, C., and Liwei, C., "Direct Intertube Cross-Linking of Carbon Nanotubes at Room Temperature," Nano Letters, Vol. 16, No. 10, 2016, pp. 6541-6547. 

  18. Slawomir, B., Rajyashree, M.S., Alan, H.W., and Krzysztof, K.K., "Enhancement of the Mechanical Properties of Directly Spun CNT Fibers by Chemical Treatment," ACS Nano, Vol. 5, No. 12, 2011, pp. 9339-9344. 

  19. Park, O.K., Choi, H., Jeong, H., Jung, Y., Yu, J.S., Lee, J.K., Hwang, J.Y., Kim, S.M., Jeong, Y., Park, C.R., Endo, M., and Ku, B.C., "High-modulus and Strength Carbon Nanotube Fibers Using Molecular Cross-linking," Carbon, Vol. 118, 2017, pp. 413-421. 

  20. Park, O.K., Lee, W., Hwang, J.Y., You, N.H., Jeong, Y., Kim, S.M., and Ku, B.C., "Mechanical and Electrical Properties of Thermochemically Cross-linked Polymer Carbon Nanotube Fibers," Composites Part A, Vol. 91, 2016, pp. 222-228. 

  21. Kim, H.J., Lee, J.K., You, N.H., Kim, S.M., Hwang, J.Y., Goh, M., Jeong, Y., and Ku, B.C., "Mechanical and Electrical Properties of Carbon Nanotube Fibers from Impregnation with Poly(vinyl alcohol)/Poly(acrylic acid) and Subsequent Thermal Condensation," Polymer Composites, Vol. 39, No. 3, 2018, pp. 971-977. 

  22. Xinyi, L., Nitilaksha, H., Kunlun, H., Maria, C.E., Victoria, H.R., Amit, K.N., Gajanan, S.B., Kang, N.G., and Jimmy, W.M., "Improving Mechanical Properties of Carbon Nanotube Fibers Through Simultaneous Solid-state Cycloaddition and Crosslinking," Nanotechnology, Vol. 28, No. 14, 2017, pp. 145603-145612. 

  23. Cho, H., Lee, J., Lee, H., Lee, C.H., Lee, K.H., Lee, S.H., and Park, J., "Effects of Wet-Pressing and Cross-Linking on the Tensile Properties of Carbon Nanotube Fibers," Materials, Vol. 11, No. 11, 2018, pp. 2170-2181. 

  24. Nam, K.H., Im, Y.O., Park, H.J., Lee, H., Park, J., Jeong, S., Kim, S.M., You, N.H., Choi, J.H., Han, H., Lee, K.H., and Ku, B.C., "Photoacoustic Effect on the Electrical and Mechanical Properties of Polymer-infiltrated Carbon Nanotube Fiber/graphene Oxide Composites," Composite Science and Technology, Vol. 153, 2017, pp. 136-144. 

  25. Shan, L., Xiaohua, Z., Jingna, Z., Meng, F., Xu, G., Yong, Z., Jia, J., Zhang, Z., and Li, Q., "Enhancement of Carbon Nanotube Fibres Using Different Solvents and Polymers," Composites Science and Technology, Vol. 72, No. 12, 2012, pp. 1402-1407. 

  26. Xia, L., Qing, S.Y., Xiao, Q.H., and Kim, M.L., "Self-densified Microstructure and Enhanced Properties of Carbon Nanotube Fiber by Infiltrating Polymer," Carbon, Vol. 106, 2016, pp. 188-194. 

  27. Jialin, L., Wenbin, G., Yagang, Y., Qingwen, L., Jin, J., Yong, W., Gengheng, Z., Shuxuan, Q., and Weibang, L., "Strengthening Carbon Nanotube Fibers with Semi-crystallized Polyvinyl Alcohol and Hot-stretching," Composite Science and Technology, Vol. 164, 2018, pp. 290-295. 

  28. Pirlot, C., Willems, I., Fonseca, A., Nagy, J.B., and Delhalle, J., "Preparation and Characterization of Carbon Nanotube/Polyacrylonitrile Composites," Advanced Engineering Materials, Vol. 4, No. 3, 2002, pp. 109-114. 

  29. Biao, W., Jianmei, L., Huaping, W., Jianming, J., and Yunqi, L., "Rheological Behavior of Spinning Dope of Multiwalled Carbon Nanotube/Polyacrylonitrile Composites," Macromolecular Symposia, Vol. 216, No. 1, 2004, pp. 189-194. 

  30. Lee, J., Kim, T., Jung, Y., Jung, K., Park, J., Lee, D.M., Jeong, H.S., Hwang, J.Y., Park, C.R., Lee, K.H., and Kim, S.M., "Highstrength Carbon Nanotube/carbon Composite Fibers via Chemical Vapor Infiltration," Nanoscale Vol. 8, No. 45, 2016, pp. 18972-18979. 

  31. Ryu, S.W., Lee, Y.H., Lee, H.S., and Hong, S.H., "High-Strength Carbon Nanotube Fibers Fabricated by Infiltration and Curing of Mussel-Inspired Catecholamine Polymer," Advanced Materials, Vol. 23, No. 17, 2011, pp. 1971-1975. 

  32. Jeong, Y.G., Song, J.Y., Cho, D.H., and Kim, B.K., "Method for Preparing Carbon Nanotube Fiber Reinforced wtih Carbon Precursor," US Patent, 2015/0069666. 

  33. Park, O.K., Chae, H.S., Park, G.Y., Nam, N.H., Lee, S., Bang, Y.H., David, H., Ku, B.C., and Lee, J.H., "Effects of Functional Group of Carbon Nanotubes on Mechanical Properties of Carbon Fibers, Composites Part B: Engineering, Vol. 76, 2015, pp. 159-166. 

  34. Chae, H.G., Bradley, A.N., Prabhakar, V.G., Yaodong, L., Kishor, K.G., Manjeshwar, G.K., Kevin, M.L., Sushanta, G., Chandrani, P., Lucille, G., Korhan, S., Ioannis, C., and Satish, K., "High Strength and High Modulus Carbon Fibers," Carbon, Vol. 93, 2015, pp. 81-87. 

  35. Lee, H.S., Dellatore, S.M., Miller, W.M., and Messersmith, P.B., "Mussel-Inspired Surface Chemistry for Multifunctional Coatings," Science, Vol. 318, 2007, pp. 426-430. 

  36. Lee, H.S., Messersmith, P., and Ryu, J.H., "Polydopamine Surface Chemistry : A Decade of Discovery," ACS Applied Materials Interfaces, Vol. 10, 2018, pp. 7523-7540. 

  37. Ryu, S.W., Rong Zhao, Lee, H.S., and Kim, S.G., "Direct Insulation-to-Conduction Transformation of Adhesive Catecholamine for Simultaneous Increases of Electrical Conductivity and Mechanical Strength of CNT Fibers," Advanced Materials, Vol. 27, 2015, pp. 3250-3255. 

  38. Sijie, W., Shaoli, F., Lei, J., Qunfeng, C., and Ray, H.B., "Strong, Conductive, Foldable Graphene Sheets by Sequential Ionic and ${\pi}$ Bridging," Advanced Materials, Vol. 30, No. 36, 2018, pp. 1802733. 

  39. Yuanyuan, Z., Jingsong, P., Stephan, E.W., and Qungfeng, C., "Bioinspired Supertough Graphene Fiber through Sequential Interfacial Interactions," ACS Nano, Vol. 12, No. 9, 2018, pp. 8901-8908. 

  40. Kim, H., Rouhollah, J., Geoffrey, M.S., and Kim, S.J., "High-strength Graphene and Polyacrylonitrile Composite Fiber Enhanced by Surface Coating with Polydopamine," Composites Science and Technology, Vol. 149, No. 8, 2017, pp. 280-285. 

  41. Songlin, Z., Ayou, H., Nam, N., Abiodun, O., Zhe, L., Yourri, D., Park, J.K., and Richard, L., "Carbon Nanotube/carbon Composite Fiber with Improved Strength and Electrical Conductivity via Interface Engineering," Carbon, Vol. 144, 2019, pp. 628-638. 

  42. Zhou, Z., Xin, W., Shanghayegh, F., Philip, D.B., Qingwen, L., and Yuntian, Z., "Mechanical and Electrical Properties of Aligned Carbon Nanotube/carbon Matrix Composites," Carbon, Vol. 75, 2014, pp. 307-313. 

  43. Thiagarajan, V., Wang, X., Bradford, P.D., Zhu, Y.T., and Yuan, F.G., "Stabilizing Carbon Nanotube Yarns Using Chemical Vapor Infiltration," Composite Science and Technology, Vol. 90, No. 10, 2014, pp. 82-87. 

  44. Xiaoyang, L., Wei, Z., Wenbin, Z., Peng, L., Shu, L., Haoming, W., Guangzhi, Y., Junhe, Y., Jie, C., Richeng, Y., Lina, Z., Jiaping, W., Qunqing, L., Weiya, Z., Weisheng, Z., Shoushan, F., and Kaili, J., "Epitaxial Growth of Aligned and Continuous Carbon Nanofibers from Carbon Nanotubes," ACS Nano, Vol. 11, No. 2, 2017, pp. 1257-1263. 

  45. Wei, H., Hong, P.Z., Javad, T., Jonathan, C., and Youhong, T., "Polydopamine as Sizing on Carbon Fiber Surfaces for Enhancement of Epoxy Laminated Composites," Composites Part A, Vol. 107, 2018, pp. 626-632. 

  46. Tao, M., Huai, L.G., Huai, P.C., Hong, B.Y., Liang, W., and Zi, Y.Y., "A Bioinspired Interface Design for Improving the Strength and Electrical Conductivity of Graphene-Based Fibers," Advanced Materials, Vol. 30, No. 15, 2018, pp. 1706435. 

  47. Kim, I.H., Yun, T.Y., Kim, J.E., Yu H.Y., Suchithra, P.S., and Lee, K.E., "Mussel-Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity," Advanced Materials, Vol. 30, No. 40, 2018, pp. 1803267. 

  48. Kim, Y.J., Park, J.B., Kim H.J., Jeong, H.S., Lee, J.H., Kim, S.M., and Kim, Y.K., "Simultaneous Enhancement of Mechanical and Electrical Properties of Carbon Nanotube Fiber by Infiltration and Subsequent Carbonization of Resorcinol-formaldehyde Resin," Composite Part B, Vol. 163, 2019, pp. 431-437. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로