$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

유산균의 곰팡이 억제 활성
Inhibitory Activity of Lactic Acid Bacteria against Fungal Spoilage 원문보기

Journal of milk science and biotechnology = 한국유가공학회지, v.37 no.2, 2019년, pp.83 - 93  

설국환 (농촌진흥청 국립축산과학원) ,  유자연 (농촌진흥청 국립축산과학원) ,  윤정희 (농촌진흥청 국립축산과학원) ,  오미화 (농촌진흥청 국립축산과학원) ,  함준상 (농촌진흥청 국립축산과학원)

Abstract AI-Helper 아이콘AI-Helper

Food spoilage by fungi is responsible for considerable food waste and economical losses. Among the food products, fermented dairy products are susceptible to deterioration due to the growth of fungi, which are resistant to low pH and can proliferate at low storage temperatures. For controlling funga...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 만약 우유 단백질이 생리활성 펩타이드로 분해되어 병원성 미생물 생장을 억제한다면 이는 포유동물에 이로운 공진화 효과(co-evolutionary effect)가 될 것이다. 본 원고에서는 유산균에 의한 곰팡이 억제 활성에 대한 연구들을 소개하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
부패 미생물을 억제하는데 가장 널리 사용되는 기작은 무엇인가? 항미생물 화합물의 생산은 부패 미생물을 억제하는데 가장 널리 사용되는 기작이다. 그런데, 항미생 물 화합물의 농도가 개별적 억제 농도 이하라는 것을 고려하면, 다른 기작을 추측하는 것이 타당하다.
유산균이 생산하는 가 장 중요하고 항미생물 특성이 밝혀진 것은 무엇인가? 이들 화합물은 단순 유기산과 일차 대사산물에서 단백질 분해뿐만 아니라 생물적 전환이나 펩타이드 합성에서 유래된 매우 복잡한 화합물까지 다양하다. 유산균이 생산하는 가 장 중요하고 항미생물 특성이 밝혀진 것은 젖산과 아세트산이다. 이들은 낮은 pH에서 수소화되었을 때 활성적이며(Arena 등, 2016), 상승적으로 작용할 수 있다(Narendranath, 2001).
젖산과 아세트산의 특징은 무엇인가? 유산균이 생산하는 가 장 중요하고 항미생물 특성이 밝혀진 것은 젖산과 아세트산이다. 이들은 낮은 pH에서 수소화되었을 때 활성적이며(Arena 등, 2016), 상승적으로 작용할 수 있다(Narendranath, 2001). 다른 유산균 대사 물질들은 비록 특정 효과를 정량화하기 어려우나, 유산균의 전체적인 항미생물 능력에 기여한다(Lindgren과 Dobrogosz, 1990).
질의응답 정보가 도움이 되었나요?

참고문헌 (69)

  1. 10.3389/fmicb.2016.00464 Arena, M. P., Silvain, A., Normanno, G., Grieco, F., Drider, D., Spano, G. and Fiocco, D. 2016. Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Front. Microbiol. 7:464. 10.3389/fmicb.2016.00464 27148172 PMC4829616 

  2. 10.1016/j.fm.2008.02.007 Arroyo-Lopez, F. N., Bautista-Gallego, J., Duran-Quintana, M. C. and GarridoFernandez, A. 2008. Modelling the inhibition of sorbic and benzoic acids on a native yeast cocktail from table olives. Food Microbiol. 25:566-574. 10.1016/j.fm.2008.02.007 18456111 

  3. 10.1016/j.ijfoodmicro.2014.11.007 Aunsbjerg, S. D., Honore, A. H., Marcussen, J., Ebrahimi, P., Vogensen, F. K., Benfeldt, C., Skov, T. and Knochel, S. 2015. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt. Int. J. Food Microbiol. 194:46-53. 10.1016/j.ijfoodmicro.2014.11.007 25461608 

  4. 10.1007/BF00189377 Bellamy, W., Wakabayashi, H., Takase, M., Kawase, K., Shimamura, S. and Tomita, M. 1993. Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med. Microbiol. Immunol. 182:97-105. 10.1007/BF00189377 8332105 

  5. 10.1111/lam.12119 Berni, E. and Scaramuzza, N. 2013. Effect of ethanol on growth of Chrysonilia sitophila (‘the red bread mould’) and Hyphopichia burtonii (‘the chalky mould’) in sliced bread. Lett. Appl. Microbiol. 57:344-349. 10.1111/lam.12119 23772878 

  6. 10.1128/AEM.03784-12 Black, B. A., Zannini, E., Curtis, J. M. and Ganzle, M. G. 2013. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread. Appl. Environ. Microbiol. 79:1866-1873. 10.1128/AEM.03784-12 23315734 PMC3592247 

  7. 10.1016/j.jff.2017.02.026 Bougherra, F., Dilmi-Bouras, A., Balti, R., Przybylski, R., Adoui, F., Elhameur, H., Chevalier, M., Flahaut, C., Dhulster, P. and Naima, N. 2017. Antibacterial activity of new peptide from bovine casein hydrolyzed by a serine metalloprotease of Lactococcus lactis subsp. lactis BR16. J. Funct. Foods. 32:112-122. 10.1016/j.jff.2017.02.026 

  8. 10.1128/AEM.02939-06 Broberg, A., Jacobsson, K., Strom, K. and Schnurer, J. 2007. Metabolite profiles of lactic acid bacteria in grass silage. Appl. Environ. Microbiol. 73:5547-5552. 10.1128/AEM.02939-06 17616609 PMC2042065 

  9. 10.1007/s00216-012-5955-1 Brosnan, B., Coffey, A., Arendt, E. K. and Furey, A. 2012. Rapid identification, by use of the LTQ Orbitrap hybrid FT mass spectrometer, of antifungal compounds produced by lactic acid bacteria. Anal. Bioanal. Chem. 403:2983-2995. 10.1007/s00216-012-5955-1 22526638 

  10. 10.3389/fmicb.2011.00213 Brudzynski, K., Abubaker, K., St-Martin, L. and Castle, A. 2011. Re-examining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey. Front. Microbiol. 2:213. 10.3389/fmicb.2011.00213 22046173 PMC3201021 

  11. 10.3390/molecules21060752 Bruni, N., Capuccino, M. T., Biasibetti, E., Pessione, E., Cirrincione, S., Giraudo, L., Corona, A. and Dosio, F. 2016. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules. 21:752. 10.3390/molecules21060752 27294909 PMC6273662 

  12. 10.1016/j.foodcont.2014.01.031 Chen, C., Chen, X., Jiang, M., Rui, X., Li, W. and Dong, M. 2014. A newly discovered bacteriocin from Weissella hellenica D1501 associated with Chinese Dong fermented meat (Nanx Wudl). Food Control. 42:116-124. 10.1016/j.foodcont.2014.01.031 

  13. 10.1186/1471-2180-7-101 Cleusix, V., Lacroix, C., Vollenweider, S., Duboux, M. and Le Blay, G. 2007. Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol. 7:101. 10.1186/1471-2180-7-101 17997816 PMC2222629 

  14. 10.1007/s002530051285 Corsetti, A., Gobbetti, M., Rossi, J. and Damiani, P. 1998. Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl. Microbiol. Biotechnol. 50:253-256. 10.1007/s002530051285 9763693 

  15. 10.1016/j.tifs.2013.07.004 Crowley, S., Mahony, J. and van Sinderen, D. 2013. Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends Food Sci. Technol. 33:93109. 10.1016/j.tifs.2013.07.004 

  16. 10.1159/000104752 De Vuyst, L. and Leroy, F. 2007. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 13:194-199. 10.1159/000104752 17827969 

  17. 10.3389/fmicb.2016.00047 Elshaghabee, F. M., Bockelmann, W., Meske, D., de Vrese, M., Walte, H. G., Schrezenmeir, J. and Heller, K. J. 2016. Ethanol production by selected intestinal microorganisms and lactic acid bacteria growing under different nutritional conditions. Front. Microbiol. 7:47. 10.3389/fmicb.2016.00047 26858714 PMC4732544 

  18. 10.1038/srep36246 Engels, C., Schwab, C., Zhang, J., Stevens, M. J., Bieri, C., Ebert, M. O., McNeill K., Sturla, S. J. and Lacroix C. 2016. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Sci. Rep. 6:36246. 10.1038/srep36246 27819285 PMC5098142 

  19. 10.3109/09546639409084531 Farmery, M., Jones’, C., Eady, E., Cove, J. and Cunliffe, W. 1994. In vitro activity of azelaic acid, benzoyl peroxide and zinc acetate against antibiotic-resistant propionibacteria from acne patients. J. Dermatolog. Treat. 5:63-65. 10.3109/09546639409084531 

  20. 10.1016/j.peptides.2015.06.001 Faruck, M. O., Yusof, F. and Chowdhury, S. 2016. An overview of antifungal peptides derived from insect. Peptides. 80:80-88. 10.1016/j.peptides.2015.06.001 26093218 

  21. 10.3389/fmicb.2017.00002 Fermandes, K. E. and Carter, D. A. 2017. The antifungal activity of lactoferrin and its derived peptides: mechanisms of action and synergy with drugs against fungal pathogens. Front. Microbiol. 8:2. 10.3389/fmicb.2017.00002 

  22. 10.1128/AEM.69.2.1305-1307.2003 Ganzle, M. G. and Vogel, R. F. 2003. Studies on the mode of action of reutericyclin. Appl. Environ. Microbiol. 69:1305-1307. 10.1128/AEM.69.2.1305-1307.2003 12571063 PMC143594 

  23. Garmiene, G., Salomskiene, J., Jasutiene, I., Macioniene, I. and Miliauskiene, I. 2010. Production of benzoic acid by lactic acid bacteria from Lactobacillus, Lactococcus and Streptococcus genera in milk. Milchwissenschaft. 65:295-298. 

  24. 10.1093/femsre/fux050 Gerwien, F., Skrahina, V., Kasper, L., Hube, B. and Brunke, S. 2018. Metals in fungal virulence. FEMS Microbiol. Rev. 42:1-21. 10.1093/femsre/fux050 29069482 PMC5812535 

  25. 10.1007/s00018-005-5373-z Gifford, J. L., Hunter, H. N. and Vogel, H. J. 2005. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol. Life Sci. 62:2588-2598. 10.1007/s00018-005-5373-z 16261252 

  26. Guo, J., Brosnan, B., Furey, A., Arendt, E., Murphy, P. and Coffey, A. 2012. Antifungal activity of Lactobacillus against Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. Bioeng. Bugs. 3:104-113. 10.4161/bbug.19624 22539027 PMC3357330 

  27. 10.1017/S0022029900015028 Hill, R. D., Lahav, E. and Givol, D. 1974. A rennin-sensitive bond in αs1 B-casein. J. Dairy Res. 41:147-153. 10.1017/S0022029900015028 4616972 

  28. 10.1007/s00216-015-9103-6 Honore, A. H., Aunsbjerg, S. D., Ebrahimi, P., Thorsen, M., Benfeldt, C., Knochel, S. and Skov, T. 2016. Metabolic footprinting for investigation of antifungal properties of Lactobacillus paracasei. Anal. Bioanal. Chem. 408:83-96. 10.1007/s00216-015-9103-6 26573172 

  29. 10.1111/j.1574-6968.1987.tb02463.x Kashket, E. R. 1987. Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol. Lett. 46:233-244. 10.1111/j.1574-6968.1987.tb02463.x 

  30. 10.1016/0278-6915(95)00097-6 Lahov, E. and Regelson, W. 1996. Antibacterial and immunostimulating casein-derived substances from milk: Casecidin, isracidin peptides. Food Chem. Toxicol. 34:131-145. 10.1016/0278-6915(95)00097-6 

  31. 10.1155/S1064744995000354 Larsen, B. and White, S. 1995. Antifungal effect of hydrogen peroxide on catalaseproducing strains of Candida spp. Infect. Dis. Obstet. Gynecol. 3:73-78. 10.1155/S1064744995000354 18476024 PMC2364421 

  32. 10.1007/s00284-014-0585-9 Lastauskiene, E., Zinkeviciene, A., Girkontaite, I., Kaunietis, A. and Kvedariene, V. 2014. Formic acid and acetic acid induce a programmed cell death in pathogenic Candida species. Curr. Microbiol. 69:303-310. 10.1007/s00284-014-0585-9 24752490 

  33. 10.1016/j.ijfoodmicro.2016.06.020 Le Lay, C., Coton, E., Le Blay, G., Chobert, J. M., Haertle, T., Choiset, Y., Van Long, N. N., Meslet-Cladiere, L. and Mounier, J. 2016. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. Int. J. Food Microbiol. 239:79-85. 10.1016/j.ijfoodmicro.2016.06.020 27350657 

  34. 10.1016/j.foodcont.2011.09.024 Leon Pelaez, A. M., Serna Catano, C. A., Quintero Yepes, E. A., Gamba Villarroel, R. R., De Antoni, G. L. and Giannuzzi, L. 2012. Inhibitory activity of lactic acid and acetic acid on Aspergillus flavus growth for food preservation. Food Control. 24:177-183. 10.1016/j.foodcont.2011.09.024 

  35. 10.3390/microorganisms5030037 Leyva Salas, M., Mounier, J., Valence, F., Coton, M., Thierry, A. and Coton, E. 2017. Antifungal microbial agents for food biopreservation-a review. Microorganisms. 5:37. 10.3390/microorganisms5030037 28698479 PMC5620628 

  36. 10.1111/j.1574-6968.1990.tb04885.x Lindgren, S. E. and Dobrogosz, W. J. 1990. Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol. Rev. 7:149-163. 10.1111/j.1574-6968.1990.tb04885.x 2125429 

  37. 10.1016/j.postharvbio.2007.03.013 Liu, Z., Zeng, M., Dong, S., Xu, J., Song, H. and Zhao, Y. 2007. Effect of an antifungal peptide from oyster enzymatic hydrolysates for control of gray mold (Botrytis cinerea) on harvested strawberries. Postharvest Biol. Technol. 46:95-98. 10.1016/j.postharvbio.2007.03.013 

  38. 10.1128/AAC.44.12.3257-3263.2000 Lupetti, A., Paulusma-Annema, A., Welling M. M., Senesi, S., van Dissel, J. T. and Nibbering, P. H. 2000. Candidacidal activities of human lactoferrin peptides derived from the N terminus. Antimicrob. Agents Chemother. 44:3257-3263. 10.1128/AAC.44.12.3257-3263.2000 11083624 PMC90189 

  39. 10.1093/jac/29.6.661 Maple, P. A., Hamilton-Miller, J. M. and Brumfitt, W. 1992. Comparison of the in-vitro activities of the topical antimicrobials azelaic acid, nitrofurazone, silver sulphadiazine and mupirocin against methicillin-resistant Staphylococcus aureus. J. Antimicro. Chemother. 29:661-668. 10.1093/jac/29.6.661 1506349 

  40. 10.1038/sj.jim.7000090 Narendranath, N. V., Thomas, K. C. and Ingledew, W. M. 2001. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J. Ind. Microbiol. Biotechnol. 26:171-177. 10.1038/sj.jim.7000090 11420658 

  41. 10.1111/j.1750-3841.2011.02257.x Ndagano, D., Lamoureux, T., Dortu, C., Vandermoten, S. and Thonart, P. 2011. Antifungal activity of 2 lactic acid bacteria of the Weissella Genus isolated from food. J. Food Sci. 76:M305-M311. 10.1111/j.1750-3841.2011.02257.x 21729073 

  42. 10.1046/j.1365-2672.1999.00632.x Niku-Paavola, M. L., Laitila, A., Mattila-Sandholm, T. and Haikara, A. 1999. New types of antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol. 86:29-35. 10.1046/j.1365-2672.1999.00632.x 10200070 

  43. Olonisakin, O. O., Jeff-Agboola, Y. A., Ogidi, C. O. and Akinyele, B. J. 2017. Isolation of antifungal lactic acid bacteria (LAB) from “Kunu” against toxigenic Aspergillus flavus. Prev. Nutr. Food Sci. 22:138-143. 

  44. 10.1111/j.1365-2672.1993.tb03402.x Ostling, C. E. and Lindgren, S. E. 1993. Inhibition of enterobacteria and Listeria growth by lactic, acetic and formic acids. J. Appl. Bacteriol. 75:18-24. 10.1111/j.1365-2672.1993.tb03402.x 8365950 

  45. 10.1016/j.lwt.2016.06.066 Ozcelik, S., Kuley, E. and Ozogul, F. 2016. Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT-Food Sci. Technol. 73:536-542. 10.1016/j.lwt.2016.06.066 

  46. 10.3389/fmicb.2016.01690 Qvirist, L. A., De Filippo, C., Strati, F., Stefanini, I., Sordo, M., Andlid, T., Felis, G. E., Mattarelli, P. and Cavalieri, D. 2016. Isolation, identification and characterization of yeasts from fermented goat milk of the Yaghnob valley in Tajikistan. Front. Microbiol. 7:1-17. 10.3389/fmicb.2016.01690 27857705 PMC5093317 

  47. 10.1016/j.biochi.2016.05.013 Rautenbach, M., Troskie, A. M. and Vosloo, J. A. 2016. Antifungal peptides: to be or not to be membrane active. Biochimie. 130:132-145. 10.1016/j.biochi.2016.05.013 27234616 

  48. 10.1016/j.foodchem.2011.01.063 Rizzello, C. G., Cassone, A., Coda, R. and Gobbetti, M. 2011. Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making. Food Chem. 127:952-959. 10.1016/j.foodchem.2011.01.063 25214083 

  49. 10.3390/foods6120110 Russo, P., Fares, C., Longo, A., Spano, G. and Capozzi, V. 2017. Lactobacillus plantarum with broad antifungal activity as a protective starter culture for bread production. Foods. 6:110. 10.3390/foods6120110 29232917 PMC5742778 

  50. 10.1021/jf902033v Ryan, L. A., Dal Bello, F., Arendt, E. K. and Koehler, P. 2009. Detection and quantitation of 2,5-diketopiperazines in wheat sourdough and bread. J. Agric. Food Chem. 57:9563-9568. 10.1021/jf902033v 19807105 

  51. 10.1016/j.ijfoodmicro.2011.02.036 Ryan, L. A., Zannini, E., Dal Bello, F., Pawlowska, A., Koehler, P. and Arendt, E. K. 2011. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. Int. J. Food Microbiol. 146:276-283. 10.1016/j.ijfoodmicro.2011.02.036 21429613 

  52. 10.1080/10408398.2016.1217825 Sah, B. N. P., Vasiljevic, T., McKechnie, S. and Donkor, O. N. 2018. Antioxidative and antibacterial peptides derived from bovine milk proteins. Crit. Rev. Food Sci. Nutr. 58:726-740. 10.1080/10408398.2016.1217825 27558592 

  53. 10.1099/mic.0.035642-0 Schaefer, L., Auchtung, T. A., Hermans, K. E., Whitehead, D., Borhan, B. and Britton, R. A. 2010. The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology. 156:1589-1599. 10.1099/mic.0.035642-0 20150236 

  54. 10.1016/j.tifs.2004.02.014 Schnurer, J. and Magnusson, J. 2005. Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci. Technol. 16:70-78. 10.1016/j.tifs.2004.02.014 

  55. 10.4315/0362-028X-71.12.2481 Schwenninger, S. M., Lacroix, C., Truttmann, S., Jans, C., Sporndli, C., Bigler, L. and Meile, L. 2008. Characterization of low-molecular-weight antiyeast metabolites produced by a food-protective Lactobacillus-Propionibacterium coculture. J. Food Prot. 71:2481-2487. 10.4315/0362-028X-71.12.2481 19244902 

  56. 10.1016/j.copbio.2018.11.015 Siedler, S., Balti, R. and Neves, A. R. 2019. Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Curr. Opin. Biotechnol. 56:138-146. 10.1016/j.copbio.2018.11.015 30504082 

  57. 10.1128/AEM.69.12.7554-7557.2003 Sjogren, J., Magnusson, J., Broberg, A., Schnurer, J. and Kenne, L. 2003. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl. Environ. Microbiol. 69:7554-7557. 10.1128/AEM.69.12.7554-7557.2003 14660414 PMC309954 

  58. 10.1016/j.procbio.2017.07.024 Song, R., Shi, Q, Gninguue, A., Wei, R. and Luo, H. 2017. Purification and identification of a novel peptide derived from by-products fermentation of spiny head croaker (Collichthys lucidus) with antifungal effects on phytopathogens. Process Biochem. 62:184-192. 10.1016/j.procbio.2017.07.024 

  59. 10.1016/j.ijfoodmicro.2009.09.025 Stratford, M., Plumridge, A., Nebe-von-Caron, G. and Archer, D. B. 2009. Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory. Int. J. Food Microbiol. 136:37-43. 10.1016/j.ijfoodmicro.2009.09.025 19846233 

  60. 10.1128/AEM.68.9.4322-4327.2002 Strom, K., Sjogren, J., Broberg, A. and Schnurer, J. 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo (L-Phetrans-4-OH-L-Pro) and 3-phenyllactic acid. Appl. Environ. Microbiol. 68:4322-4327. 10.1128/AEM.68.9.4322-4327.2002 12200282 PMC124062 

  61. Urbiene, S. and Leskauskaite, D. 2006. Formation of some organic acids during fermentation of milk. Pol. J. Food Nutr. Sci. 56:277-281. 

  62. 10.1111/j.1574-6968.2004.tb09494.x Valerio, F., Lavermicocca, P., Pascale, M. and Visconti, A. 2004. Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS Microbiol. Lett. 233:289-295. 10.1111/j.1574-6968.2004.tb09494.x 15063498 

  63. 10.1111/j.1574-6976.1993.tb00020.x Vandenbergh, P. A. 1993. Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol. Rev. 12:221-237. 10.1111/j.1574-6976.1993.tb00020.x 

  64. 10.4315/0362-028X.JFP-10-512 Yang, E. J. Kim, Y. S. and Chang, H. C. 2011. Purification and characterization of antifungal δ-dodecalactone from Lactobacillus plantarum AF1 isolated from Kimchi. J. Food Prot. 74:651-657. 10.4315/0362-028X.JFP-10-512 21477483 

  65. 10.1186/2191-0855-2-48 Yang, E., Fan, L., Jiang, Y., Doucette, C. and Fillmore, S. 2012. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express. 2:1-12. 10.1186/2191-0855-2-48 22963659 PMC3488010 

  66. 10.1124/pr.55.1.2 Yeaman, M. R. and Yount, N. Y. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55:27-55. 10.1124/pr.55.1.2 12615953 

  67. 10.5851/kosfa.2016.36.3.427 Yu, H. S., Lee, N. K., Jeon, H. L., Eom, S. J., Yoo, M. Y., Lim S. D. and Paik, H. D. 2016. Benzoic acid production with respect to starter culture and incubation temperature during yogurt fermentation using response surface methodology. Korean J. Food Sci. Anim. Resour. 36:427-434. 10.5851/kosfa.2016.36.3.427 27433115 PMC4942559 

  68. 10.1128/JCM.34.12.3031-3034.1996 Zerva, L., Hollis, R. J. and Pfaller, M. A. 1996. In vitro susceptibility testing and DNA typing of Saccharomyces cerevisiae clinical isolates. J. Clin. Microbiol. 34:3031-3034. 

  69. 10.1016/j.fm.2009.11.019 Zhang, C., Brandt, M. J., Schwab, C. and Ganzle, M. G. 2010. Propionic acid production by cofermentation of Lactobacillus buchneri and Lactobacillus diolivorans in sourdough. Food Microbiol. 27:390-395. 10.1016/j.fm.2009.11.019 20227604 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로