$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

곰팡이 생육 및 곰팡이 독소 생산의 억제에 있어서의 유산균의 역할
The Roles of Lactic Acid Bacteria for Control of Fungal Growth and Mycotoxins 원문보기

생명과학회지 = Journal of life science, v.30 no.12, 2020년, pp.1128 - 1139  

김지후 (부산대학교 식품영양학과) ,  이희섭 (부산대학교 식품영양학과)

초록
AI-Helper 아이콘AI-Helper

최근 기후의 급속한 변화에 따라서 식품과 농산물에 Aspergillus, Fusarium 및 Penicillium속에 해당하는 곰팡이에 의한 오염이 빈번하고 이들에 의해 생성되는 aflatoxins, fumonisins, ochratoxins, patulin, trichothecenes, zearalenone등의 곰팡이 독소로 인해서 인간의 건강에 위해를 끼치고 또한 경제적인 손실을 가져오게 하고 있다. 최근 건강에 대한 소비자의 관심으로 인하여 기존에 사용되고 있는 프로피온산 및 소브산과 같은 보존료에 대한 거부감이 증가하고 있어 천연의 소재로부터 이를 대체할 만한 항진균제의 개발이 필요한 상황이다. 본 총설에서는 곰팡이의 생육 및 독소 생성을 제어하기 위한 생물학적 방법으로 유산균의 역할에 대하여 살펴보고자 하였다. 최근의 연구에 의하면 유산균은 저분자 화합물인 유기산, reuterin, 단백질 유래 화합물, 하이드록시 지방산, 페놀 화합물과 같은 다양한 대사산물을 통하여 곰팡이의 생육을 효과적으로 억제시키고 있으며, 또한 유산균의 세포벽 구성성분과의 흡착, 곰팡이 독소의 분해 및 곰팡이 독소의 생산 저해 등을 통하여 곰팡이 독소의 생산을 감소시키고 있는 사실이 제시되고 있다. 유산균은 다양한 종류를 포함하고 있으며 다양한 대사산물을 생산하고 있으므로 이를 바탕으로 효과적으로 곰팡이의 생육 및 독소 생산을 제어할 수 있는 잠재력 갖추고 있으므로, 유산균은 식품에 있어서 곰팡이의 생육을 조절하는 소재로서 주목 받을 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

Over recent years, it has become evident that food and agricultural products are easily contaminated by fungi of Aspergillus, Fusarium, and Penicillium due to rapid climate change, which is not only a global food quality concern but also a serious health concern. Owing to consumers' interest in heal...

주제어

표/그림 (4)

참고문헌 (103)

  1. Abrunhosa, L., Ines, A., Rodrigues, A. I., Guimaraes, A., Pereira, V. L., Parpot, P., Mendes-Faia, A. and Venancio, A. 2014. Biodegradation of ochratoxin A by Pediococcus parvulus isolated from Douro wines. Int. J. Food Microbiol. 188, 45-52. 

  2. Adedokun, E. O., Rather, I. A., Bajpai, V. K. and Park, Y. H. 2016. Biocontrol efficacy of Lactobacillus fermentum YML 014 against food spoilage moulds using the tomato puree model. Front. Life Sci. 9, 64-68. 

  3. Alvarez-Cisneros, Y. M. and Ponce-Alquicira, E. 2018. Antibiotic resistance in lactic acid bacteria. pp. 53-73. In: Kumar, Y. (ed.), Antimicrobial resistance: a global threat. IntechOpen: London, UK. 

  4. Aunsbjerg, S. D., Honore, A. H., Marcussen, J., Ebrahimi, P., Vogensen, F. K., Benfeldt, C., Skov, T. and Knochel, S. 2015. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt. Int. J. Food Microbiol. 194, 46-53. 

  5. Avis, T. J. and Belanger, R. R. 2001. Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl. Environ. Microbiol. 67, 956-960. 

  6. Axel, C., Brosnan, B., Zannini, E., Peyer, L. C., Furey, A., Coffey, A. and Arendt, E. K. 2016. Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough. Appl. Microbiol. Biotechnol. 100, 1701-1711. 

  7. Axelsson, L. T., Chung, T. C., Dobrogosz, W. J. and Lindgren, S. E. 1989. Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb. Ecol. Health Dis. 2, 131-136. 

  8. Axelsson, L. 1990. Lactobacillus reuteri a member of the gut bacterial flora. Ph.D. dissertation, Swedish University of Agricultural Sciences, Uppsala, Sweden. 

  9. Bartkiene, E., Lele, V., Ruzauskas, M., Domig, K. J., Starkute, V., Zavistanaviciute, P., Bartkevics, V., Pugajeva, I., Klupsaite, D., Juodeikiene, G., Mickiene, R. and Rocha, J. M. 2020. Lactic acid bacteria Isolation from spontaneous sourdough and their characterization including antimicrobial and antifungal properties evaluation. Microorganisms 81, 64. 

  10. Batish, V. K., Lal, R. and Grover, S. 1990. Effect of nutritional factors on the production of antifungal substance by Lactococcus lactis biovar. diacetylactis. Aust. J. Dairy Technol. 45, 74-76. 

  11. Bazukyan, I., Matevosyan, L., Toplaghaltsyan, A. and Trchounian, A. 2018. Antifungal activity of lactobacilli isolated from Armenian dairy products: An effective strain and its probable nature. AMB Exp. 8, 87. 

  12. Belkacem-Hanfi, N., Fhoula, I., Semmar, N., Guesmi, A., Perraud-Gaime, I., Ouzari, H. I., Boudabous, A. and Roussos, S. 2014. Lactic acid bacteria against post-harvest moulds and ochratoxin A isolated from stored wheat. Biol. Contr. 76, 52-59. 

  13. Bergsson, G., Arnfinnsson, J., Steingrimsson, O. and Thormar, H. 2001. In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob. Agents Chemother. 45, 3209-3212. 

  14. BIOMIN. 2020. Biomin World Mycotoxin Survey 2019. 

  15. CAST. 2003. Mycotoxins: risks in plant, animals and human systems, pp. 2-19, Council for Agricultural Science and Technology, Ames, IA, USA. 

  16. Chapot-Chartier, M. P. and Kulakauskas, S. 2014. Cell wall structure and function in lactic acid bacteria. Microb. Cell Fact. 13, S9. 

  17. Cheong, E. Y. L., Sandhu, A., Jayabalan, J., Kieu Le, T. T., Nhiep, N. T., My Ho, H. T., Zwielehner, J., Bansal, N. and Turner, M. S. 2014. Isolation of lactic acid bacteria with anti-fungal activity against the common cheese spoilage mould Penicillium commune and their potential as biopreservatives in cheese. Food Contr. 46, 91-97. 

  18. Chon, J. W., Seo, K. H., Bae, D., Jeong, D. and Song, K. Y. 2020. Status and prospect of lactic acid bacteria with antibiotic resistance. J. Dairy Sci. Biotechnol. 38, 70-88. 

  19. Ciegler, A., Lillehoj, E. B., Peterson, R. E. and Hall, H. H. 1966. Microbial detoxification of aflatoxin. Appl. Microbiol. 14, 934-939. 

  20. Coda, R., Rizzello, C. G., Nigro, F., De Angelis, M., Arnault, P. and Gobbetti, M. 2008. Long-term fungal inhibitory activity of watersoluble extracts of Phaseolus vulgaris cv. Pinto and sourdough lactic acid bacteria during bread storage. Appl. Environ. Microbiol. 74, 7391-7398. 

  21. Cortes-Zavaleta, O., Lopez-Malo, A., Hernandez-Mendoza, A. and Garcia, H. S. 2014. Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. Int. J. Food Microbiol. 173, 30-35. 

  22. Crowley, S., Bottacini, F., Mahony, J. and van Sinderen, D. 2013. Complete genome sequence of Lactobacillus plantarum strain 16, a broad-spectrum antifungal-producing lactic acid bacterium. Genome Announc. 1, e00533-13. 

  23. Dagnas, S., Gauvry, E., Onno, B. and Membre, J. M. 2015. Quantifying effect of lactic, acetic, and propionic acids on growth of molds isolated from spoiled bakery products. J. Food Prot. 78, 1689-1698. 

  24. Dalie, D. K. D., Deschamps, A. M. and Richard-Forget, F. 2010. Lactic acid bacteria-Potential for control of mould growth and mycotoxins: A review. Food Contr. 21, 370-380. 

  25. Delavenne, E., Ismail, R., Pawtowski, A., Mounier, J., Barbier, G. and Le Blay, G. 2013. Assessment of lactobacilli strains as yogurt bioprotective cultures. Food Contr. 30, 206-213. 

  26. De Ambrosini, V. M., Gonzalez, S., Perdigon, G., Holgado, A. P. D. and Oliver, G. 1996. Chemical composition of the cell wall of lactic acid bacteria and related species. Chem. Pharm. Bull. 44, 2263-2267. 

  27. Dong, A. R., Thuy Ho, V. T., Lo, R., Bansal, N. and Turner, M. S. 2017. A genetic diversity study of antifungal Lactobacillus plantarum isolates. Food Contr. 72, 83-89. 

  28. El-Nezami, H., Kankaanpaa, P., Salminen, S. and Ahokas, J. 1998. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem. Toxicol. 36, 321-326. 

  29. Eskola, M., Kos, G., Elliott, C. T., Hajslova, J., Mayar, S. and Krska, R. 2019. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited 'FAO estimate' of 25%. Crit. Rev. Food Sci. Nutr. 3, 1-17. 

  30. Florianowicz, T. 2001. Antifungal activity of some microorganisms against Penicillium expansum. Eur. Food Res. Technol. 212, 282-286. 

  31. Furukawa, T. and Sakuda, S. 2019. Inhibition of aflatoxin production by paraquat and external superoxide dismutase in Aspergillus flavus. Toxins 11, 12. 

  32. Galvano, F., Piva, A., Ritieni, A. and Galvano, G. 2001. Dietary strategies to counteract the effects of mycotoxins: A review. J. Food Prot. 64, 120-131. 

  33. Gerbaldo, G. A., Barberis, C., Pascual, L., Dalcero, A. and Barberis, L. 2012. Antifungal activity of two Lactobacillus strains with potential probiotic properties. FEMS Microbiol. Lett. 332, 27-33. 

  34. Gerez, C. L., Torino, M. I., Rollan, G. and Font de Valdez, G. 2009. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Contr. 20, 144-148. 

  35. Gourama, H. 1997. Inhibition of growth and mycotoxin production of Penicillium by Lactobacillus species. LWT - Food Sci. Technol. 30, 279-283. 

  36. Guimaraes, A., Venancio, A. and Abrunhosa, L. 2018. Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum. Food Add. Contam. 35, 1803-1818. 

  37. Hathout, A. S. and Aly, S. E. 2014. Biological detoxification of mycotoxins: A review. Annal. Microbiol. 64, 905-919. 

  38. Hawar, S., Vevers, W., Karieb, S., Ali, B. K., Billington, R. and Beal, J. 2013. Biotransformation of patulin to hydroascladiol by Lactobacillus plantarum. Food Contr. 34, 502-508. 

  39. Hernandez-Mendoza, A., Garcia, H. S. and Steele, J. L. 2009. Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1. Food Chem. Toxicol. 47, 1064-1068. 

  40. Holzapfel, W. H., Geisen, R. and Schillinger, U. 1995. Biological preservation of foods with reference to protective cultures, bacteriocins and food grade enzymes. Int. J. Food Microbiol. 24, 343-362. 

  41. Hutkins, R. W. 2019. Microbiology and technology of fermented foods, pp. 25-64, 2nd ed., John Wiley & Sons, Inc: Hoboken, NJ, USA. 

  42. Ibryamova, S., Arhangelova, N., Koynova, T., Dimitrov, D., Dimitrova, Z., Ivanov, R., Kalchev, K., Chipev, N., Natchev, N. and Ignatova-Ivanova, T. 2020. Antifungal activity of lactic acid bacteria, isolated from Mytilus galloprovincialis Lam. in the Bulgarian black sea aquatory. J. IMAB. 26, 2875-2882. 

  43. Jard, G., Liboz, T., Mathieu, F., Guyonvarc'h, A. and Lebrihi, A. 2011. Review of mycotoxin reduction in food and feed: From prevention in the field to detoxification by adsorption or transformation. Food Addit. Contam. 28, 1590-1609. 

  44. Karami, S., Roayaei, M., Zahedi, E., Bahmani, M., Mahmoodnia, L., Hamzavi, H. and Rafieian-Kopaei, M. 2017. Antifungal effects of Lactobacillus species isolated from local dairy products. Int. J. Pharm. Investig. 7, 77-81. 

  45. Kim, J. K., Kim, Y. S., Lee, C. H., Seo, M. Y., Jang, M. K., Ku, E. J., Park, K. H. and Yoon, M. H. 2017. A study on the safety of mycotoxins in grains and commonly consumed foods. J. Food Hyg. Saf. 32, 470-476. 

  46. Kivanc, M., Kivanc, S. A. and Pektas, S. 2014. Screening of lactic acid bacteria for antifungal activity against fungi. J. Food Process. Technol. 5, 310. 

  47. Klaenhammer, T. R. 1998. Functional activities of Lactobacillus probiotics: genetic mandate. Int. Dairy J. 8, 497-505. 

  48. Lacanin, I., Mounier, J., Pawtowski, A., Duskova, M., Kamenik, J. and Karpiskova, R. 2017.Assessment of the antifungal activity of Lactobacillus and Pediococcus spp. for use as bioprotective cultures in dairy products. World J. Microbiol. Biotechnol, 33, 188. 

  49. Lahtinen, S. J., Haskard, C. A., Ouwehand, A. C., Salminen, S. J. and Ahokas, J. T. 2004. Binding of aflatoxin B-1 to cell wall components of Lactobacillus rhamnosus strain GG. Food Add. Contam. 21, 158-164. 

  50. Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A. and Gobbetti, M. 2000. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl. Environ. Microbiol. 66, 4084-4090. 

  51. Lavermicocca, P., Valerio, F. and Visconti, A. 2003. Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl. Environ. Microbiol. 69, 634-640. 

  52. Lee, S. H. and Chang, H. C. 2016. Isolation of antifungal activity of Leuconostoc mesenteroides TA from kimchi and characterization of its antifungal compounds. Food Sci. Biotechnol. 25, 213-219. 

  53. Liew, W. P. P. and Mohd-Redzwan, S. 2018. Mycotoxin: Its impact on gut health and microbiota. Front. Cell. Infect. Microbiol. 8, 60. 

  54. Lipinska, L., Klewicki, R., Sojka, M., Bonikowski, R., Zyzelewicz, D., Kolodziejczyk, K. and Klewicka, E. 2018. Antifungal activity of Lactobacillus pentosus LOCK 0979 in the presence of polyols and galactosyl-polyols. Probiotics Antimicrob. Proteins 10, 186-200. 

  55. Liu, Y., Yamdeu, J. H. G., Gong, Y. Y. and Orfila, C. 2019. A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Compr. Rev. Food Sci. Food Saf. 19, 1521-1560. 

  56. Magnusson, J. 2003. Antifungal activity of lactic acid bacteria. Ph.D. dissertation, Swedish University of Agricultural Sciences, Uppsala, Sweden. 

  57. Mauch, A., Dal Bello, F., Coffey, A. and Arendt, E. K. 2010. The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. Int. J. Food Microbiol. 141, 116-121. 

  58. Milani, J. M. 2013. Ecological conditions affecting mycotoxin production in cereals: A review. Vet. Med. 58, 405-411. 

  59. Mirocha, C. J., Schauerhamer, B., Christensen, C. M., NikuPaavola, M. L. and Nummi, M. 1979. Incidence of zearalenol (Fusarium mycotoxin) in animal feed. Appl. Environ. Microbiol. 38, 749-750. 

  60. Moss, M. O. 2008. Fungi, quality and safety issues in fresh fruits and vegetables. J. Appl. Microbiol. 104, 1239-1243. 

  61. Muthusamy, K., Soundharrajan, I., Srisesharam, S., Kim, D., Kuppusamy, P., Lee, K. D. and Choi, K. C. 2020. Probiotic characteristics and antifungal activity of Lactobacillus plantarum and its impact on fermentation of italian ryegrass at low moisture. Appl. Sci. 10, 417. 

  62. Nazzaro, F., Fratianni, F., Coppola, R. and De Feo, V. 2017. Essential oils and antifungal activity. Pharmaceuticals 10, 86. 

  63. Niderkorn, V., Boudra, H. and Morgavi, D. P. 2006. Binding of Fusarium mycotoxins by fermentative bacteria in vitro. J. Appl. Microbiol. 101, 849-856. 

  64. Niderkorn, V., Morgavi, D. P., Pujos, E., Tissandier, A. and Boudra, H. 2007. Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model. Food Add. Contam. 24, 406-415. 

  65. Oliveira, P., Brosnan, B., Jacob, F., Furey, A., Coffey, A., Zannini, E. and Arendt, E. K. 2015. Lactic acid bacteria bio-protection applied to the malting process. Part II: Substrate impact and mycotoxin reduction. Food Contr. 51, 444-452. 

  66. Pawlowska, A. M., Zannini, E., Coffey, A. and Arendt, E. K. 2012. "Green preservatives": Combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. Adv. Food Nutr. Res. 66, 217-238. 

  67. Pereira, G. V. D., Beux, M., Pagnoncelli, M. G. B., Soccol, V. T., Rodrigues, C. and Soccol, C. R. 2016. Isolation, selection and evaluation of antagonistic yeasts and lactic acid bacteria against ochratoxigenic fungus Aspergillus westerdijkiae on coffee beans. Lett. Appl. Microbiol. 62, 96-101. 

  68. Petruzzi, L., Sinigaglia, M., Corbo, M. R., Campaniello, D., Speranza, B. and Bevilacqua, A. 2014. Decontamination of ochratoxin A by yeasts: Possible approaches and factors leading to toxin removal in wine. Appl. Microbiol. Biotechnol. 98, 6555-6567. 

  69. Piard, J. C. and Desmazeaud, M. 1991. Inhibition factors produced by lactic acid bacteria: Oxygen metabolites and catabolism end-products. Lait 71, 525-541. 

  70. Piotrowska, M. 2014. The adsorption of ochratoxin A by Lactobacillus species. Toxins 6, 2826-2839. 

  71. Quattrini, M., Liang, N., Fortina, M. G., Xiang, S., Curtis, J. M. and Ganzle, M. 2019. Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread. Int. J. Food Microbiol. 302, 8-14. 

  72. Quinto, E. J., Jimenez, P., Caro, I., Tejero, J., Mateo, J. and Girbes, T. 2014. Probiotic lactic acid bacteria: A review. Food Nutr. Sci. 5, 1765-1775. 

  73. Rather, I. A., Seo, B. J., Kumar, V. J. R., Choi, U. H., Choi, K. H., Lim, J. H. and Park, Y. H. 2013. Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML007 and its application as a food preservative. Lett. Appl. Microbiol. 57, 69-76. 

  74. Reddy, K. R. N., Reddy, C. S. and Muralidharan, K. 2009. Potential of botanicals and biocontrol agents on growth and aflatoxin production by Aspergillus flavus infecting rice grains. Food Contr. 20, 173-178. 

  75. Reddy, K. R. N., Nurdijati, S. B. and Salleh, B. 2010. An overview of plant-derived products on control of mycotoxigenic fungi and mycotoxins. Asian J. Plant Sci. 9, 126-133. 

  76. Redondo-Blanco, S., Fernandez, J., Lopez-Ibanez, S., Miguelez, E. M., Villar, C. J., Lombo, F. 2020. Plant phytochemicals in food preservation: Antifungal bioactivity: A review. J. Food Prot. 83, 163-171. 

  77. Roy, U., Batish, V. K., Grover, S. and Neelakantan, S. 1996. Production of antifungal substance by Lactococcus lactis subsp. lactis CHD-28.3. Int. J. Food Microbiol. 32, 27-34. 

  78. Ruas-Madiedo, P., Sanchez, B., Hidalgo-Cantabrana, C., Margolles, A. and Laws, A. 2012. Exopolysaccharides from lactic acid bacteria and bifidobacteria. In: Hui, Y. H. (ed.), Handbook of animal-based fermented food and beverage technology. CRC Press: Boca Raton, FL, USA 

  79. Russo, P., Arena, M. P., Fiocco, D., Capozzi, V., Drider, D. and Spano, G. 2017. Lactobacillus plantarum with broad anti-fungal activity: A promising approach to increase safety and shelf-life of cereal-based products. Int. J. Food Microbiol. 247, 48-54. 

  80. Ryan, L. A. M., Zannini, E., Dal Bello, F., Pawlowska, A., Koehler, P. and Arendt, E. K. 2011. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. Int. J. Food Microbiol. 146, 276-283. 

  81. Sadiq, F. A, Yan, B., Tian, F., Zhao, J., Zhang, H. and Chen, W. 2019. Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 18, 1403-1436. 

  82. Salas, M. L., Mounier, J., Valence, F., Coton, M., Thierry, A. and Coton, E. 2017. Antifungal microbial agents for food biopreservation-A review. Microorganisms 5, 37. 

  83. Sathe, S. J., Nawani, N. N., Dhakephalkar, P. K. and Kapadnis, B. P. 2007. Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. J. Appl. Microbiol. 103, 2622-2628. 

  84. Schaarschmidt, S. and Fauhl-Hassek, C. 2018. The fate of mycotoxins during the processing of wheat for human consumption. Compr. Rev. Food Sci. Food Saf. 17, 556-593. 

  85. Schaefer, L., Auchtung, T. A., Hermans, K. E., Whitehead, D., Borhan, B. and Britton, R. A. 2010. The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiol. 156, 1589-1599. 

  86. Sellamani, M., Kalagatur, N. K., Siddaiah, C., Mudili, V., Krishna, K., Natarajan, G. and Putcha, V. L. R. 2016. Antifungal and zearalenone inhibitory activity of Pediococcus pentosaceus isolated from dairy products on Fusarium graminearum. Front. Microbiol. 7, 890. 

  87. Siedler, S., Balti, R. and Neves, A. R. 2019.Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Curr. Opin. Biotechnol. 56, 138-146. 

  88. Sjogren, J., Magnusson, J., Broberg, A., Schnurer, J. and Kenne, L. 2003. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl. Environ. Microbiol. 69, 7554-7557. 

  89. Stoyanova, L. G., Ustyugova, E. A., Sultimova, T. D., Bilanenko, E. N., Fedorova, G. B., Khatrukha, G. S. and Netrusov, A. I. 2010. New antifungal bacteriocin-synthesizing strains of Lactococcus lactis ssp. lactis as the perspective biopreservatives for protection of raw smoked sausages. Am. J. Agric. Biol. Sci. 5, 477-485. 

  90. Stratford, M. and Eklund, T. 2003 Organic acids and esters. pp. 48-84. In: Russell, N. J. and Gould, G. W. (ed.), Food Preservatives. Springer: Boston, MA, USA. 

  91. Svanstrom, A., Boveri, S., Bostrom, E. and Melin, P. 2013. The lactic acid bacteria metabolite phenyllactic acid inhibits both radial growth and sporulation of filamentous fungi. BMC Res. Notes 6, 464. 

  92. Topcu, A., Bulat, T., Wishah, R. and Boyaci, I. H. 2010. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. Int. J. Food Microbiol. 139, 202-205. 

  93. Valerio, F., Favilla, M., De Bellis, P., Sisto, A., de Candia, S. and Lavermicocca, P. 2009. Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Sys. Appl. Microbiol. 32, 438-448. 

  94. Varsha, K. K., Devendra, L., Shilpa, G., Priya, S., Pandey, A. and Nampoothiri, K. M. 2015. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int. J. Food Microbiol. 211, 44-50. 

  95. Verheecke, C., Liboz, T. and Mathieu, F. 2016. Microbial degradation of aflatoxin B1: Current status and future advances. Int. J. Food Microbiol. 237, 1-9. 

  96. Voulgari, K., Hatzikamari, M., Delepoglou, A., Georgakopoulos, P., Litopoulou-Tzanetaki, E. and Tzanetakis, N. 2010. Antifungal activity of non-starter lactic acid bacteria isolates from dairy products. Food Contr. 21, 136-142. 

  97. Walker, R. 1990. Toxicology of sorbic acid and sorbates. Food Addit. Contam. 7, 671-676. 

  98. Wang, L., Yue, T., Yuan, Y., Wang, Z., Ye, M. and Cai, R. 2015. A new insight into the adsorption mechanism of patulin by the heat-inactive lactic acid bacteria cells. Food Contr. 50, 104-110. 

  99. Wiseman, D. W. and Marth, E. H. 1981. Growth and aflatoxin production by Aspergillus parasiticus when in the presence of Streptococcus lactis. Mycopathologia 73, 49-56. 

  100. Xu, H. Y., Liu, W. J., Zhang, W. Y., Yu, J., Song, Y. Q., Menhe, B., Zhang, H. and Sun, Z. H. 2015. Use of multilocus sequence typing to infer genetic diversity and population structure of Lactobacillus plantarum isolates from different sources. BMC Microbiol. 15, 241-241. 

  101. Yiannikouris, A., Andre, G., Poughon, L., Francois, J., Dussap, C. G., Jeminet, G., Berti, G. and Jouany, J. P. 2006. Chemical and conformational study of the interactions involved in mycotoxin complexation with β-d-glucans. Biomacromolecules 7, 1147-1155. 

  102. Zhang, X. Q., Zhang, S. L., Shi, Y., Shen, F. D. and Wang, H. K. 2014. A new high phenyl lactic acid-yielding Lactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene. FEMS Microbiol. Lett. 356, 89-96. 

  103. Zoghi, A., Khosravi-Darani, K., Sohrabvandi, S., Attar, H. and Alavi, S. A. 2017. Effect of probiotics on patulin removal from synbiotic apple juice. J. Sci. Food Agric. 97, 2601-2609. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로