$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

128 채널 뇌파를 이용한 사이버멀미 평가법 개발
Development of a Method of Cybersickness Evaluation with the Use of 128-Channel Electroencephalography 원문보기

감성과학 = Science of emotion & sensibility, v.22 no.3, 2019년, pp.3 - 20  

한동욱 (과학기술연합대학원대학교 한국표준과학연구원 캠퍼스 의학물리학) ,  이동현 (과학기술연합대학원대학교 한국표준과학연구원 캠퍼스 의학물리학) ,  지경하 (충남대학교 의류학과) ,  안봉영 (한국표준과학연구원 의료융합표준센터) ,  임현균 (한국표준과학연구원 의료융합표준센터)

초록
AI-Helper 아이콘AI-Helper

가상현실 기술이 발전하면서 다양한 영역에서 여러 목적으로 활용되고 있다. 하지만 사용자로부터 메스꺼움, 어지러움 등과 같은 멀미 증상에 대한 부작용도 함께 보고되고 있다. 이런 멀미 증상을 사이버멀미라고 말하며, 사용자에게 불편을 야기시켜 불쾌감과 스트레스와 같은 부정적 영향을 줄 수 있으며, 현재 사이버멀미의 발생 원인과 해결책에 관한 공식적인 표준이 없다. 본 연구에서는 이런 한계점을 극복하기 위해 정량적, 객관적 사이버멀미 평가법을 제안하였다. 10명의 20대 남성 대상으로 이동과 회전을 하는 가상현실을 경험하게 하면서 128채널의 뇌파를 측정하였다. 11개 영역에서 Delta와 Alpha 상대 파워를 계산하고, ROC curve를 통해 area under the ROC curve (AUC)가 가장 높은 값을 가지는 다중회귀모형을 도출하였다. 이렇게 도출한 다중회귀모형은 11개의 설명변수로 피험자가 응답한 사이버멀미의 정도와 비교하여 95.1 % (AUC = 0.951)의 정확성으로 사이버멀미를 구분하는 것이 가능함을 알 수 있었다. 이러한 결과를 정리하면 본 연구에서는 128 채널의 뇌파를 통해 멀미에 대한 객관적 반응을 확인하였으며, 뇌의 특정부위에서 반응이 있는 것으로 나타났다. 본 연구 결과와 분석법을 활용하면 추후 사이버멀미 관련 연구에 도움이 될 수 있을 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

With advancements in technology of virtual reality, it is used for various purposes in many fields such as medical care and healthcare, but as the same time there are also increasing reports of nausea, eye fatigue, dizziness, and headache from users. These symptoms of motion sickness are referred to...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • , 2016; Park & Hu, 1999). 그래서 본 연구에서는 사이버멀미 유발 요인을 명확하게 알기 위해 생리주기에 의해 호르몬 수준의 차이가 나지 않는 남성 피험자 중심으로 실험을 진행하였다. 특히, 신체 건강한 20대 성인 남성 10명(평균 연령:26.
  • 그렇기 때문에 적정한 수준으로 감소시키는 것이 중요한데, 선행 연구에서 연구자에 따라 각자 다양한 디스플레이 형태와 가상환경을 통해 실험을 진행하여 참고할 만한 기준이 마땅치가 않다. 그래서 일반 모니터와 커브 모니터, 이 두 모니터를 통해 하드웨어적으로만 시야각이 달라질 때의 사이버멀미 차이를 알아보고자 하였다.
  • , 2019). 그리고 11개의 영역은 좌측, 중앙, 우측의 전두엽, 두정엽, 후두엽과 좌측, 우측의 측두엽으로 구성하였으며, 이렇게 11개 영역으로 나눈 이유는 fMRI를 사용한 멀미 관련 선행 연구 결과와 비교하기 위함이다.
  • , 2017). 본 연구에서는 사이버멀미에 대한 뇌의 활동에 큰 비중을 두고 있으므로 뇌파 중심으로 논의하였다.
  • , 2018). 본 연구에서는 위와 같은 한계점을 극복하기 위해 선행 연구로부터 사이버멀미와 관련된 요인들을 분류하고 뇌파를 이용한 사이버멀미의 평가법을 제안하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
Roll(X축 회전)이 왜 사이버 멀미를 일으키나? 특히 회전운동 중 Pitch는 배 멀미와 비슷하며, Yaw는 흔히 일상생활에 접하는 회전이지만 Roll은 상대적으로 비행기를 타야 경험할 수 있는 회전이다. 이러한 이유로 Roll은 시각과 전정 감각 시스템이 아직 익숙하지가 않아 사이버 멀미를 더 느끼는 요인이라고 보기도 한다(Rebenitsch & Owen, 2016).
뇌파 분석에서 수집하는 신호는 무엇인가? , 2009). 이렇게 기록하는 전위차는 뇌에서 일어나는 여러 전기적 활동성의 합을 반영하고 있어 피질 뉴런의 흥분과 억제 시냅스후 전위(EPSPs, IPSPs), 뉴런의 활동 전위(Action potential) 그리고 근육이나 눈의 움직임 등에서 유발되는 전기적 신호까지 포함되어 있다. 이러한 뇌파 신호를 충분히 필터나 노이즈 제거 기술로 노이즈 성분을 제거하고 시간이나 주파수 영역에서 뇌파를 분석한다.
사이버멀미란? , 2018; Rebenitsch & Owen, 2016). 따라서 본 논문에서는 시각 자극에 의해서만 유발되는 신체 이상 증상을 사이버멀미라 정의하며 모니터, HMD, 스크린 등과 같은 디스플레이 조건에서 가상현실을 경험할 때 나타나는 멀미로 한정한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (95)

  1. Aykent, B., Yang, Z., Merienne, F., & Kemeny, A. (2014). Simulation sickness comparison between a limited field of view virtual reality head mounted display (Oculus) and a medium range field of view static ecological driving simulator (Eco2). Paper presented at the Driving Simulation Conference Europe 2014 Proceedings. 

  2. Benzeroual, K., & Allison, R. S. (2013). Cyber (motion) sickness in active stereoscopic 3D gaming. Paper presented at the 2013 International Conference on 3D Imaging. DOI: 10.1109/ic3d.2013.6732090 

  3. Berntsen, K., Palacios, R. C., & Herranz, E. (2016). Virtual reality and its uses: a systematic literature review. Paper presented at the Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality. DOI: 10.1145/3012430.3012553 

  4. Bhandari, J., MacNeilage, P., & Folmer, E. (2018). Teleportation without Spatial Disorientation Using Optical Flow Cues. Paper presented at the Proceedings of Graphics Interface. 

  5. Bonato, F., Bubka, A., & Palmisano, S. (2009). Combined pitch and roll and cybersickness in a virtual environment. Aviation, Space, and Environmental Medicine, 80(11), 941-945. DOI: 10.3357/asem.2394.2009 

  6. Bonato, F., Bubka, A., Palmisano, S., Phillip, D., Moreno, G., & Environments, V. (2008). Vection change exacerbates simulator sickness in virtual environments. PRESENCE: Teleoperators and Virtual Environments, 17(3), 283-292. DOI: 10.1162/pres.17.3.283 

  7. Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. DOI: 10.1016/s0031-3203(96)00142-2 

  8. Calbi, M., Siri, F., Heimann, K., Barratt, D., Gallese, V., Kolesnikov, A., & Umilta, M. A. (2019). How context influences the interpretation of facial expressions: a source localization high-density EEG study on the "Kuleshov effect". Scientific reports, 9(1), 2107. DOI: 10.1038/s41598-018-37786-y 

  9. Chang, E., Seo, D., Kim, H. T., & Yoo, B. (2018). An Integrated Model of Cybersickness: Understanding User's Discomfort in Virtual Reality. Journal of KIISE, 45(3), 251-279. DOI: 10.5626/jok.2018.45.3.251 

  10. Chardonnet, J.-R., Mirzaei, M. A., & Merienne, F. (2015). Visually induced motion sickness estimation and prediction in virtual reality using frequency components analysis of postural sway signal. Paper presented at the International Conference on Artificial Reality and Telexistence Eurographics Symposium on Virtual Environments. 

  11. Chen, A. C., Dworkin, S. F., Haug, J., & Gehrig, J. (1989). Topographic brain measures of human pain and pain responsivity. Pain, 37(2), 129-141. DOI: 10.1016/0304-3959(89)90125-5 

  12. Chen, D., So, R., Kwok, K., & Cheung, R. (2012). Visually induced motion sickness after watching scenes oscillating at different frequencies and amplitudes. Ergonomics & Human Factors. Blackpool, UK, 253-260. DOI: 10.1201/b11933-61 

  13. Chen, S., Jia, Y., & Woltering, S. (2018). Neural differences of inhibitory control between adolescents with obesity and their peers. International Journal of Obesity, 42(10), 1753. DOI: 10.1038/s41366-018-0142-x 

  14. Chen, W., Chen, J., & So, R. H. Y. (2011). Visually induced motion sickness: effects of translational visual motion along different axes. Contemporary Ergonomics and Human Factors, 281-287. DOI: 10.1201/b11337-47 

  15. Chen, Y. C., Duann, J. R., Chuang, S. W., Lin, C. L., Ko, L. W., Jung, T.-P., & Lin, C.-T. (2010). Spatial and temporal EEG dynamics of motion sickness. NeuroImage, 49(3), 2862-2870. DOI: 10.1016/j.neuroimage.2009.10.005 

  16. Cheron, G., Leroy, A., De Saedeleer, C., Bengoetxea, A., Lipshits, M., Cebolla, A., . . . McIntyre, J. (2006). Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction. Brain Research, 1121(1), 104-116. DOI: 10.1016/j.brainres.2006.08.098 

  17. Clemes, S. A., & Howarth, P. A. (2005). The menstrual cycle and susceptibility to virtual simulation sickness. Journal of Biological Rhythms, 20(1), 71-82. DOI: 10.1177/0748730404272567 

  18. Cobb, S. V., Nichols, S., Ramsey, A., & Wilson, J. R. (1999). Virtual reality-induced symptoms and effects (VRISE). Presence: Teleoperators & Virtual Environments, 8(2), 169-186. DOI: 10.1162/105474699566152 

  19. Cornick, J. E., & Blascovich, J. (2014). Are Virtual Environments the New Frontier in Obesity Management? Social and Personality Psychology Compass, 8(11), 650-658. DOI: 10.1111/spc3.12141 

  20. Davis, S., Nesbitt, K., & Nalivaiko, E. (2014). A systematic review of cybersickness. Paper presented at the Proceedings of the 2014 Conference on Interactive Entertainment. DOI: 10.1145/2677758.2677780 

  21. Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage, 34(4), 1443-1449. DOI: 10.1016/j.neuroimage.2006.11.004 

  22. Dennison, M. S., Wisti, A. Z., & D'Zmura, M. (2016). Use of physiological signals to predict cybersickness. Displays, 44, 42-52. DOI: 10.1016/j.displa.2016.07.002 

  23. Dou, W., Li, J., Sun, S., Yu, H., Lv, X., Yang, Y., . . . Li, M., & Pu, F. (2019). Comparison of Electroencephalogram (EEG) Power Spectra Between Non-Vection and Vection. Journal of Medical Imaging and Health Informatics, 9(1), 58-62. DOI: 10.1166/jmihi.2019.2540 

  24. Duh, H. B.-L., Parker, D. E., & Furness, T. A. (2001). An "independent visual background" reduced balance disturbance envoked by visual scene motion: implication for alleviating simulator sickness. Paper presented at the Proceedings of the SIGCHI conference on human factors in computing systems. DOI: 10.1145/365024.365051 

  25. Dzhebrailova, T. D. (2003). Spectral EEG characteristics in students with different anxiety profile during tests. Zhurnal vysshei nervnoi deiatelnosti imeni IP Pavlova, 53(4), 495-502. DOI: 10.1023/b:hump.0000049581.77570.9c 

  26. Farmer, A. D., Ban, V. F., Coen, S. J., Sanger, G. J., Barker, G. J., Gresty, M. A., . . . Aziz, Q. (2015). Visually induced nausea causes characteristic changes in cerebral, autonomic and endocrine function in humans. The Journal of physiology, 593(5), 1183-1196. DOI: 10.1113/jphysiol.2014.284240 

  27. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. DOI: 10.1016/j.patrec.2005.10.010 

  28. Fernandes, A. S., & Feiner, S. K. (2016). Combating VR sickness through subtle dynamic field-of-view modification. Paper presented at the 2016 IEEE Symposium on 3D User Interfaces (3DUI). DOI: 10.1109/3dui.2016.7460053 

  29. Ferrer-Garcia, M., Gutierrez-Maldonado, J., & Riva, G. (2013). Virtual reality based treatments in eating disorders and obesity: a review. Journal of Contemporary Psychotherapy, 43(4), 207-221. DOI: 10.1007/s10879-013-9240-1 

  30. Gasser, T., Verleger, R., Bacher, P., & Sroka, L. (1988). Development of the EEG of school-age children and adolescents. I. Analysis of band power. Electroencephalography and Clinical Neurophysiology, 69(2), 91-99. DOI: 10.1016/0013-4694(88)90204-0 

  31. Gavgani, A. M., Hodgson, D. M., & Nalivaiko, E. J. (2017). Effects of visual flow direction on signs and symptoms of cybersickness. PLOS ONE, 12(8), e0182790. DOI: 10.1371/journal.pone.0182790 

  32. Gavgani, A. M., Nesbitt, K. V., Blackmore, K. L., & Nalivaiko, E. (2017). Profiling subjective symptoms and autonomic changes associated with cybersickness. Autonomic Neuroscience, 203, 41-50. DOI: 10.1016/j.autneu.2016.12.004 

  33. Golding, J. F. (1998). Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain research bulletin, 47(5), 507-516. DOI: 10.1016/s0361-9230(98)00091-4 

  34. Golding, J. F. (2006). Predicting individual differences in motion sickness susceptibility by questionnaire. Personality and Individual differences, 41(2), 237-248. DOI: 10.1016/j.paid.2006.01.012 

  35. Goldman, R. I., Stern, J. M., Engel Jr, J., & Cohen, M. S. (2002). Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport, 13(18), 2487. DOI:10.1097/01.wnr.0000047685.08940.d0 

  36. Golikova, Z., & Strelets, V. (2003). Development of examination stress in subjects with various levels of cortical activation. Zhurnal vysshei nervnoi deiatelnosti imeni IP Pavlova, 53(6), 697-704. 

  37. Greiner, M., Pfeiffer, D., & Smith, R. (2000). Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Preventive veterinary medicine, 45(1-2), 23-41. DOI: 10.1016/s0167-5877(00)00115-x 

  38. Harvey, C., & Howarth, P. A. (2007). The effect of display size on visually-induced motion sickness (VIMS) and skin temperature. Paper presented at the Proceedings of the 1st international symposium on visually induced motion sickness, fatigue, and photosensitive epileptic seizures, Hong Kong. 

  39. Hollenstein, N., Rotsztejn, J., Troendle, M., Pedroni, A., Zhang, C., & Langer, N. (2018). ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading. Scientific data, 5, 180291. DOI: 10.1038/sdata.2018.291 

  40. Homan, R. W., Herman, J., & Purdy, P. (1987). Cerebral location of international 10-20 system electrode placement. Electroencephalography and clinical neurophysiology, 66(4), 376-382. DOI: 10.1016/0013-4694(87)90206-9 

  41. Kaiser, D. A. (2010). Cortical cartography. Biofeedback, 38(1), 9-12. DOI: 10.5298/1081-5937-38.1.9 

  42. Keil, A., Stolarova, M., Heim, S., Gruber, T., & Muller, M. M. (2003). Temporal stability of high-frequency brain oscillations in the human EEG. Brain Topography, 16(2), 101-110. DOI: 10.1023/b:brat.0000006334.15919.2c 

  43. Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203-220. DOI: 10.1207/s15327108ijap0303_3 

  44. Keshavarz, B., & Hecht, H. (2011). Axis rotation and visually induced motion sickness: the role of combined roll, pitch, and yaw motion. Aviation, space, and environmental medicine, 82(11), 1023-1029. DOI: 10.3357/asem.3078.2011 

  45. Kim, H. K., Park, J., Choi, Y., & Choe, M. (2018). Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment. Applied ergonomics, 69, 66-73. DOI: 10.1016/j.apergo.2017.12.016 

  46. Kim, Y. Y., Kim, E. N., Park, M. J., Park, K. S., Ko, H. D., & Kim, H. T. (2008). The application of biosignal feedback for reducing cybersickness from exposure to a virtual environment. Presence: Teleoperators and Virtual Environments, 17(1), 1-16. 

  47. Kim, Y. Y., Kim, H. J., Kim, E. N., Ko, H. D., & Kim, H. T. (2005). Characteristic changes in the physiological components of cybersickness. Psychophysiology, 42(5), 616-625. DOI: 10.1111/j.1469-8986.2005.00349.x 

  48. Klem, G. H., Luders, H. O., Jasper, H., & Elger, C. (1999). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 52(3), 3-6. 

  49. Koessler, L., Maillard, L., Benhadid, A., Vignal, J. P., Felblinger, J., Vespignani, H., & Braun, M. (2009). Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system. NeuroImage, 46(1), 64-72. DOI: 10.1016/j.neuroimage.2009.02.006 

  50. Kolasinski, E. M. (1995). Simulator Sickness in Virtual Environments. (No. ARI-TR-1027). Army Research Institute for the Behavioral and Social Sciences. DOI:10.21236/ada295861 

  51. Labounek, R., Janecek, D., Marecek, R., Lamos, M., Slavicek, T., Mikl, M., . . . Jan, J. (2016). Generalized EEG-fMRI spectral and spatiospectral heuristic models. Paper presented at the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). DOI: 10.1109/isbi.2016.7493379 

  52. LaCount, L., Napadow, V., Kuo, B., Park, K., Kim, J., Brown, E. N., & Barbieri, R. (2009). Dynamic cardiovagal response to motion sickness: a point-process heart rate variability study. Paper presented at the 2009 36th Annual Computers in Cardiology Conference (CinC). 

  53. Larson, E. B., Ramaiya, M., Zollman, F. S., Pacini, S., Hsu, N., Patton, J. L., & Dvorkin, A. Y. (2011). Tolerance of a virtual reality intervention for attention remediation in persons with severe TBI. Brain Injury, 25(3), 274-281. DOI: 10.3109/02699052.2010.551648 

  54. Lin, C.-L., Jung, T.-P., Chuang, S.-W., Duann, J.-R., Lin, C.-T., & Chiu, T.-W. (2013). Self-adjustments may account for the contradictory correlations between HRV and motion-sickness severity. International Journal of Psychophysiology, 87(1), 70-80. DOI: 10.1016/j.ijpsycho.2012.11.003 

  55. Liu, C.-L., & Uang, S.-T. (2012). A study of sickness induced within a 3D virtual store and combated with fuzzy control in the elderly. Paper presented at the 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery. DOI:10.1109/fskd.2012.6234149 

  56. Llorach, G., Evans, A., & Blat, J. (2014). Simulator sickness and presence using HMDs: comparing use of a game controller and a position estimation system. Paper presented at the Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology. DOI: 10.1145/2671015.2671120 

  57. Lo, W., & So, R. H. (2001). Cybersickness in the presence of scene rotational movements along different axes. Applied ergonomics, 32(1), 1-14. DOI: 10.1016/s0003-6870(00)00059-4 

  58. Lubeck, A. J., Bos, J. E., & Stins, J. F. (2015). Motion in images is essential to cause motion sickness symptoms, but not to increase postural sway. Displays, 38, 55-61. DOI: 10.1016/j.displa.2015.03.001 

  59. Luu, P., & Ferree, T. (2005). Determination of the HydroCel Geodesic Sensor Nets' average electrode positions and their 10-10 international equivalents. Inc, Technical Note. 

  60. McCann, R. A., Armstrong, C. M., Skopp, N. A., Edwards-Stewart, A., Smolenski, D. J., June, J. D., . . . Reger, G. M. (2014). Virtual reality exposure therapy for the treatment of anxiety disorders: an evaluation of research quality. Journal of anxiety disorders, 28(6), 625-631. DOI: 10.1016/j.janxdis.2014.05.010 

  61. McCauley, M. E., & Sharkey, T. J. (1992). Cybersickness: Perception of self-motion in virtual environments. Presence: Teleoperators & Virtual Environments, 1(3), 311-318. DOI: 10.1162/pres.1992.1.3.311 

  62. McMenamin, B. W., Shackman, A. J., Maxwell, J. S., Bachhuber, D. R., Koppenhaver, A. M., Greischar, L. L., & Davidson, R. J. (2010). Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG. NeuroImage, 49(3), 2416-2432. DOI: 10.1016/j.neuroimage.2009.10.010 

  63. Microsoft (2019). Headpose. Retrieved from https://docs.microsoft.com/ko-kr/azure/cognitive-services/face/images/headpose.1.jpg 

  64. Min, B.-C., Chung, S.-C., Min, Y.-K., & Sakamoto, K. (2004). Psychophysiological evaluation of simulator sickness evoked by a graphic simulator. Applied ergonomics, 35(6), 549-556. DOI: 10.1016/j.apergo.2004.06.002 

  65. Nalivaiko, E., Davis, S. L., Blackmore, K. L., Vakulin, A., & Nesbitt, K. V. (2015). Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Physiology & Behavior, 151, 583-590. DOI: 10.1016/j.autneu.2015.07.032 

  66. Napadow, V., Sheehan, J. D., Kim, J., LaCount, L. T., Park, K., Kaptchuk, T. J., . . . Kuo, B. J. (2012). The brain circuitry underlying the temporal evolution of nausea in humans. Cerebral Cortex, 23(4), 806-813. DOI: 10.1093/cercor/bhs073 

  67. Naqvi, S. A. A., Badruddin, N., Jatoi, M. A., Malik, A. S., Hazabbah, W., & Abdullah, B. (2015). EEG based time and frequency dynamics analysis of visually induced motion sickness (VIMS). Australasian physical & engineering sciences in medicine, 38(4), 721-729. DOI: 10.1007/s13246-015-0379-9 

  68. Niemiec, A. J., & Lithgow, B. J. (2006). Alpha-band characteristics in EEG spectrum indicate reliability of frontal brain asymmetry measures in diagnosis of depression. Paper presented at the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. DOI: 10.1109/iembs.2005.1616251 

  69. Nuwer, M. R. (2018). 10-10 electrode system for EEG recording. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 129(5), 1103-1103. DOI: 10.1016/j.clinph.2018.01.065 

  70. Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., . . . Dan, I. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. NeuroImage, 21(1), 99-111. DOI: 10.1016/j.neuroimage.2003.08.026 

  71. Palmisano, S., Mursic, R., & Kim, J. (2017). Vection and cybersickness generated by head-and-display motion in the Oculus Rift. Displays, 46, 1-8. DOI: 10.1016/j.displa.2016.11.001 

  72. Parsons, T. D., Rizzo, A. A., Rogers, S., & York, P. (2009). Virtual reality in paediatric rehabilitation: a review. Developmental neurorehabilitation, 12(4), 224-238. DOI: 10.1080/17518420902991719 

  73. Rebenitsch, L., & Owen, C. (2016). Review on cybersickness in applications and visual displays. Virtual Reality, 20(2), 101-125. DOI: 10.1007/s10055-016-0285-9 

  74. Riccelli, R., Passamonti, L., Toschi, N., Nigro, S., Chiarella, G., Petrolo, C., . . . Indovina, I. (2017). Altered insular and occipital responses to simulated vertical self-motion in patients with persistent postural-perceptual dizziness. Frontiers in Neurology, 8, 529. DOI: 10.3389/fneur.2017.00529 

  75. Rosenkranz, K., & Lemieux, L. (2010). Present and future of simultaneous EEG-fMRI. Magnetic Resonance Materials in Physics, Biology and Medicine, 23(5-6), 309-316. DOI: 10.1007/s10334-009-0196-9 

  76. Ruffle, J. K., Patel, A., Giampietro, V., Howard, M. A., Sanger, G. J., Andrews, P. L. R., . . . Farmer, A. D. (2019). Functional brain networks and neuroanatomy underpinning nausea severity can predict nausea susceptibility using machine learning. Journal of Physiology, 597(6), 1517-1529. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30629751. DOI: 10.1113/JP277474 

  77. Sharples, S., Cobb, S., Moody, A., & Wilson, J. R. (2008). Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Display, 29(2), 58-69. DOI: 10.1016/j.displa.2007.09.005 

  78. Shigemasu, H., Morita, T., Matsuzaki, N., Sato, T., Harasawa, M., & Aizawa, K. (2006). Effects of physical display size and amplitude of oscillation on visually induced motion sickness. Paper presented at the Proceedings of the ACM symposium on Virtual reality software and technology. DOI: 10.1145/1180495.1180571 

  79. So, R. H., & Lo, W. (1998). Cybersickness with virtual reality training applications: a claustrophobia phenomenon with head-mounted displays. Paper presented at the Proceeding of the 1st world congress on ergonomics for global quality and productivity, Hong Kong. 

  80. So, R. H., & Lo, W. (1999). Cybersickness: an experimental study to isolate the effects of rotational scene oscillations. Paper presented at the Proceedings IEEE Virtual Reality (Cat. No. 99CB36316). DOI: 10.1109/vr.1999.756957 

  81. So, R. H., Ho, A., & Lo, W. (2001). A metric to quantify virtual scene movement for the study of cybersickness: Definition, implementation, and verification. Presence: Teleoperators & Virtual Environments, 10(2), 193-215. DOI: 10.1162/105474601750216803 

  82. So, R. H., Lo, W., & Ho, A. T. (2001). Effects of navigation speed on motion sickness caused by an immersive virtual environment. Human factors, 43(3), 452-461. DOI: 10.1518/001872001775898223 

  83. Soininen, H., Partanen, J., Paakkonen, A., Koivisto, E., & Riekkinen, P. (1991). Changes in absolute power values of EEG spectra in the follow­up of Alzheimer's disease. Acta Neurologica Scandinavica, 83(2), 133-136. 

  84. Song, S. W. (2009). Using the Receiver Operating Characteristic (ROC) Curve to Measure Sensitivity and Specificity. Korean Journal of Family Medicine, 30(11). DOI: 10.4082/kjfm.2009.30.11.841 

  85. Staudigl, T., Leszczynski, M., Jacobs, J., Sheth, S. A., Schroeder, C. E., Jensen, O., & Doeller, C. F. (2018). Hexadirectional Modulation of High-Frequency Electrophysiological Activity in the Human Anterior Medial Temporal Lobe Maps Visual Space. Current Biology, 28(20), 3325-3329. e3324. DOI: 10.1016/j.cub.2018.09.035 

  86. Steinicke, F., Bruder, G., & Kuhl, S. J. A. T. o. G. (2011). Realistic perspective projections for virtual objects and environments. ACM Transactions on Graphics, 30(5), 112. DOI: 10.1145/2019627.2019631 

  87. Teplan, M. (2002). Fundamentals of EEG measurement. Measurement Science Review, 2(2), 1-11. 

  88. Toschi, N., Kim, J., Sclocco, R., Duggento, A., Barbieri, R., Kuo, B., & Napadow, V. (2017). Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions. Autonomic Neuroscience, 202, 108-113. DOI: 10.1016/j.autneu.2016.10.003 

  89. Weech, S., Kenny, S., & Barnett-Cowan, M. (2019). Presence and Cybersickness in Virtual Reality Are Negatively Related: A Review. Front Psychol, 10, 158. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30778320.DOI: 10.3389/fpsyg.2019.00158 

  90. Wiederhold, B. K. (2006). The potential for virtual reality to improve health care. The Virtual Reality Medical Center. 

  91. Wiederhold, M. D., & Wiederhold, B. K. (2007). Virtual reality and interactive simulation for pain distraction. In: Blackwell Publishing Inc Malden, USA. DOI: 10.1111/j.1526-4637.2007.00381.x 

  92. Wikimedia Commons (2011a). International 10-20 system for EEG electrode placement. https://commons.wikimedia.org/wiki/File:International_10-20_system_for_EEG-MCN.svg 

  93. Wirsich, J., Ridley, B., Besson, P., Jirsa, V., Benar, C., Ranjeva, J.-P., & Guye, M. (2017). Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity. NeuroImage, 161, 251-260. DOI: 10.1016/j.neuroimage.2017.08.055 

  94. Young, S. D., Adelstein, B. D., & Ellis, S. R. (2006). Demand characteristics of a questionnaire used to assess motion sickness in a virtual environment. Paper presented at the IEEE Virtual Reality Conference (VR 2006). DOI: 10.1109/vr.2006.44 

  95. Zu?ewicz, K., Saulewicz, A., Konarska, M., & Kaczorowski, Z. (2011). Heart rate variability and motion sickness during forklift simulator driving. International Journal of Occupational Safety and Ergonomics, 17(4), 403-410. DOI: 10.1080/10803548.2011.11076903 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로