$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

발효 김치가 흰쥐의 장내 미생물 형성에 미치는 영향
Modulation of Intestinal Microbiota by Supplementation of Fermented Kimchi in Rats 원문보기

생명과학회지 = Journal of life science, v.29 no.9, 2019년, pp.986 - 995  

안수진 (경남과학기술대학교 동물소재공학과) ,  김재영 (경남과학기술대학교 양돈과학기술센터) ,  김인성 (경남과학기술대학교 동물소재공학과) ,  비슈누 아디카리 (아칸소대학교 가금류학과) ,  유다윤 (경남과학기술대학교 동물소재공학과) ,  김정아 (경남과학기술대학교 동물소재공학과) ,  권영민 (아칸소대학교 가금류학과) ,  이상석 (순천대학교 동물자원과학과) ,  최인순 (신라대학교 생명과학과) ,  조광근 (경남과학기술대학교 동물소재공학과)

초록
AI-Helper 아이콘AI-Helper

장내 미생물은 숙주의 건강을 유지하는 데 중요한 역할을 하며, 식단에 의하여직접적으로 영향을 받아 조절된다. 김치는 식이 섬유와 젖산균(LAB)이 풍부한 발효 식품이다. 발효 김치가 장내 미생물의 구성에 미치는 영향을 조사하기 위하여 6주령의 수컷 Sprague-Dawley 흰쥐 45마리를 대상으로 기본 사료(CON), 발효 김치(FK)와 키토산 첨가 발효 김치(CFK)를 각각 4주간 급여 하였다. 체중과 사료 섭취량을 매주 측정하였으며, 미생물 분석은 장내용물 수집 후 pyrosequencing을 통하여 16S rRNA 유전자 분석으로 확인 하였다. FK 및 CFK군은 대조군에 비해 체중, 사료 효율 및 혈중 triglyceride 농도가 감소한 것으로 나타났다. 장내 미생물의 다양성은 대조군에 비해 FK와 CFK군 모두에서 증가하였다. 비만과 관련된 Firmicutes 미생물이 감소한 반면, 체중 감소와 관련된 Bacteroidetes 미생물이 증가하였다. 젖산균과 체중 감소 관련 박테리아 및 butyrate 생산 박테리아는 대조군에 비해 FK 및 CFK군에서 증가하였다. 발효 김치는 비만을 억제하고 장내 유익한 미생물의 성장을 촉진하였다.

Abstract AI-Helper 아이콘AI-Helper

Intestinal microbiota play a key role in maintaining the host's health, and variety and richness of this microbiota is directly influenced and modulated by the host's diet. Kimchi is a fermented food rich in dietary fibers and lactic acid bacteria (LAB). To investigate the effect of fermented kimchi...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In the present study, after supplying fermented Kimchior chitosan-added fermented Kimchi for four weeks, the total body weight gain, daily weight gain, total feed intake, and feed efficiency of the experimental animals were measured to investigate the weight gain efficiency of the experimental animals (Fig. 1). Although, as compared to the control group, FK and CFK groups showed tendencies towards decrease in total body weight gain and daily weight gain, and increase in total feed intake, no significant difference was found across the 3 groups (Fig.
  • With five repetitions of three per cage per group, the experimental animals were divided into three treatment groups that received either basal diet (CON), basal diet supplemented with fermented Kimchi (FK) or chitosan-added fermented Kimchi(CFK) for 4 weeks. The experimental animals were maintained in the controlled environment with 20~25℃ temperature, 50~60% humidity, and 12/12 hr cycle of day/night. Feed and water were provided ad libitum.
  • To investigate the effects of fermented Kimchi on the composition and structure of intestinal microbiota, FK and CFKwere fed to the experimental rats for 4 weeks. The collected intestinal contents were combined for each rat, and the PCR products of 16S rRNA genes amplified from the samples were used to analyze the intestinal microbiota through pyrosequencing and bioinformatics analysis.
  • To investigate the effects of the consumption of the fermented Kimchi on the body fat formation, the concentrations of the blood lipid components including low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL)cholesterol, and triglycerides were measured. After feedingfor 4 weeks, there was no significant difference in serumLDL and HDL cholesterol concentrations among the control, FK, and CFK groups (Fig.
  • Forty-five male Sprague-Dawley rats of six weeks old were purchased from Samtako (Osan, Korea). With five repetitions of three per cage per group, the experimental animals were divided into three treatment groups that received either basal diet (CON), basal diet supplemented with fermented Kimchi (FK) or chitosan-added fermented Kimchi(CFK) for 4 weeks. The experimental animals were maintained in the controlled environment with 20~25℃ temperature, 50~60% humidity, and 12/12 hr cycle of day/night.

데이터처리

  • The pairwise comparison among different groups was performed by Tukey’s multiple range tests where the level of significant was considered at 0.05 (p<0.05)unless described otherwise.

이론/모형

  • The similarity of base sequences between the query and candidate species was calculated using the Myers and Miller method [24]. The cladogram was calculated using the TBC clustering algorithm [19]. Overall phylogenetic differences, Shannon index, and heat map analyses of the correlations across three different groups were investigated using the CL community program provided by ChunLab (Seoul, Korea).
  • The sequences in the EzTaxon-e database that were not identified in the BLASTN searches were classified as non-target sequences and thus were excluded fromthe further analysis. The similarity of base sequences between the query and candidate species was calculated using the Myers and Miller method [24]. The cladogram was calculated using the TBC clustering algorithm [19].
  • The statistical analysis of the data was performed using the General Linear Model (GLM) procedure of the SAS(Version 9.1). The pairwise comparison among different groups was performed by Tukey’s multiple range tests where the level of significant was considered at 0.
본문요약 정보가 도움이 되었나요?

참고문헌 (41)

  1. Ahn, S. C. and Lee, G. J. 1995. Effects of salt-fermented fish and Chitosan addition on the pectic substance and the texture changes of Kimchi during fermentation. Kor. J. Soc. Food. Sci. 11, 309-315. 

  2. Bloomer, R. J., Canale, R. E., Shastri, S. and Suvarnapathki, S. 2010. Effect of oral intake of capsaicinoid beadlets on catecholamine secretion and blood markers of lipolysis in healthy adults: a randomized, placebo controlled, double-blind, cross-over study. Lipids Health. Dis. 9, 72. 

  3. Cheigh, H. S., Song, E. S. and Jeon, Y. S. 1999. Changes of chemical and antioxidative characteristics of chlorophylls in the model system of mustard leaf kimchi during fermentation. J. Kor. Soc. Food Sci. Nutr. 5, 15-20. 

  4. Choi, S. M., Jeon, Y. S., Rhee, S. H. and Park, K. Y. 2002. Red pepper powder and kimchi reduce body weight and blood and tissue lipids in rats fed a high fat diet. Prev. Nutr. Food Sci. 7, 162-167. 

  5. Commission, C. A. 2001. Codex standard for kimchi (Codex Stan 223), pp. 1-3., USA. 

  6. De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccini, G. and Lionetti, P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 107, 14691-14696. 

  7. Despres, J. P., Moorjani, S., Tremblay, A., Ferland, M., Lupien, P. J., Nadeau, A. and Bouchard, C. 1989. Relation of high plasma triglyceride levels associated with obesity and regional adipose tissue distribution to plasma lipoprotein- lipid composition in premenopausal women. Clin. Invest. Med. 12, 374-380. 

  8. Hadwiger, L., Fristensky, B. and Riggleman, R. 1984. Chitosan, a natural regulator in plant-fungal pathogen interactions, increases crop yields. Chitin, chitosan and related enzymes 291-302. 

  9. Han, K., Bose, S., Wang, J. H., Kim, B. S., Kim, M. J., Kim, E. J. and Kim, H. 2015. Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women. Mol. Nutr. Food Res. 59, 1004-1008. 

  10. Jernberg, C., Sullivan, A., Edlund, C. and Jansson, J. K. 2005. Monitoring of antibiotic-induced alterations in the human intestinal microflora and detection of probiotic strains by use of terminal restriction fragment length polymorphism. Appl. Environ. Microbiol. 71, 501-506. 

  11. Karlsson, F., Tremaroli, V., Nielsen, J. and Backhed, F. 2013. Assessing the human gut microbiota in metabolic diseases. Diabetes 62, 3341-3349. 

  12. Kelly, J. R., Borre, Y., O'Brien, C., Patterson, E., El Aidy, S., Deane, J., Kennedy, P. J., Beers, S., Scott, K., Moloney, G., Hoban, A. E., Scott, L., Fitzgerald, P., Ross, P., Stanton, C., Clarke, G., Cryan, J. F. and Dinan, T. G. 2016. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 82, 109-118. 

  13. Kim, J. Y., Choi, E. Y., Hong, Y. H., Song, Y. O., Han, J. S., Lee, S. S., Han, E. S., Kim, T. W., Choi, I. S. and Cho, K. K. 2016. Changes in Korean Adult Females' Intestinal Microbiota Resulting from Kimchi Intake. J. Nutr. Food Sci. 6, 486. 

  14. Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S. and Chun, J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. 

  15. Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K., Tani, T., Takahashi, T., Miyauchi, S., Shioi, G., Inoue, H. and Tsujimoto, G. 2013. The gut microbiota suppresses insulinmediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4, 1829. 

  16. Kobayashi, A., Osaka, T., Namba, Y., Inoue, S., Lee, T. H. and Kimura, S. 1998. Capsaicin activates heat loss and heat production simultaneously and independently in rats. Am. J. Physiol. 275, R92-R98. 

  17. Kong, Y. H., Cheigh, H. S., Song, Y. O., Jo, Y. O. and Choi, S. Y. 2007. Anti-obesity effects of kimchi tablet composition in rats fed high-fat diet. J. Kor. Soc. Food Sci. Nutr. 36, 1529-1536. 

  18. Lee, H. W., Park, Y. S., Jung, J. S. and Shin, W. S. 2002. Chitosan oligosaccharides, dp 2-8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe 8, 319-324. 

  19. Lee, J. H., Yi, H., Jeon, Y. S., Won, S. and Chun, J. 2012. TBC: a clustering algorithm based on prokaryotic taxonomy. J. Microbiol. 50, 181-185. 

  20. Lin, H. V., Frassetto, A., Kowalik, E. J. Jr., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., Hubert, J. A., Szeto, D., Yao, X., Forrest, G. and Marsh, D. J. 2012. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7, e35240. 

  21. Louis, P. and Flint, H. J. 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS. Microbiol. Lett. 294, 1-8. 

  22. Mariat, D., Firmesse, O., Levenez, F., Guimar?es, V., Sokol, H., Dore, J., Corthier, G. and Furet, J. P. 2009. The Firmicutes/ Bacteroidetes ratio of the human microbiota changes with age. BMC. Microbiol. 9, 123. 

  23. Moon, E. W., Kim, S. Y., Dang, Y. M., Park, B. Y., Park, E. J., Song, H. Y., Yang, J. S., Yoon, S. R., Seo, H. Y. and Ha, J. H. 2019. Comparison of microbial and physicochemical properties between Pogi Kimchi and Mat Kimchi. J. Kor. Soc. Food. Cult. 34, 217-223. 

  24. Myers, E. W. and Miller, W. 1988. Optimal alignments in linear space. CABIOS. 4, 11-17. 

  25. Nagai, F., Morotomi, M., Watanabe, Y., Sakon, H. and Tanaka, R. 2010. Alistipes indistinctus sp. nov. and Odoribacter laneus sp. nov., common members of the human intestinal microbiota isolated from faeces. Int. J. Syst. Evol. Microbiol. 60, 1296-1302. 

  26. Neyrinck, A. M., Possemiers, S., Druart, C., Van de Wiele, T., De Backer, F., Cani, P. D., Larondelle, Y. and Delzenne, N. M. 2011. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/ Prevotella in diet-induced obese mice. PLoS One 6, e20944. 

  27. No, H. K., Park, I. K. and Kim, S. D. 1995. Extension of shelf-life of Kimchi by addition of chitosan during salting. J. Kor. Soc. Food Nutr. 24, 932-936. 

  28. Park, J. A., Heo, G. Y., Lee, J. S., Oh, Y. J., Kim, B. Y., Mheen, T. I., Kim, C. K. and Ahn, J. S. 2003. Change of Microbial Communities in Kimchi. Kor. J. Microbiol. 39, 45-50. 

  29. Park, J. A., Tirupathi Pichiah, P. B., Yu, J. J., Oh, S. H., Daily, J. W. 3rd. and Cha, Y. S. 2012. Anti-obesity effect of kimchi fermented with Weissella koreensis OK1-6 as starter in high-fat diet-induced obese C57BL/6J mice. J. Appl. Microbiol. 113, 1507-1516. 

  30. Park, K. Y. 1995. The nutritional evaluation, and antimutagenic and anticancer effects of kimchi. J. Kor. Soc. Food Nutr. 24, 169-182. 

  31. Park, Y. H., Kim, J. G., Shin, Y. W., Kim, H. S., Kim, Y. J., Chun, T., Kim, S. H. and Whang, K. Y. 2008. Effects of Lactobacillus acidophilus 43121 and a mixture of Lactobacillus casei and Bifidobacterium longum on the serum cholesterol level and fecal sterol excretion in hypercholesterolemiainduced pigs. Biosci. Biotechnol. Biochem. 72, 595-600. 

  32. Raymond, J. 2006. World's healthiest foods: Kimchi (Korea). Health Magazine. 

  33. Rumberger, J. M., Arch, J. R. and Green, A. 2014. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes. PeerJ. 2, e611. 

  34. Schwiertz, A., Taras, D., Schafer, K., Beijer, S., Bos, N. A., Donus, C. and Hardt, P. D. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190-195. 

  35. Seo, J. S., Bang, B. H. and Jeong, E. J. 2004. Studies on the prolonging of Kimchi fermentation by adding chitosan. Kor. J. Food Nutr. 17, 60-65. 

  36. Settanni, L. and Corsetti, A. 2008. Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 121, 123-138. 

  37. Slavin, J. L. 2005. Dietary fiber and body weight. Nutrition 21, 411-418. 

  38. Steimle, A., Gronbach, K., Beifuss, B., Schafer, A., Harmening, R., Bender, A., Maerz, J. K., Lange, A., Michaelis, L., Maurer, A., Menz, S., McCoy, K., Autenrieth, I. B., Kalbacher, H. and Frick, J. S. 2016. Symbiotic gut commensal bacteria act as host cathepsin S activity regulators. J. Autoimmun. 75, 82-95. 

  39. Turnbaugh, P. J., Backhed, F., Fulton, L. and Gordon, J. I. 2008. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213-223. 

  40. Yang, J., Martinez, I., Walter, J., Keshavarzian, A. and Rose, D. J. 2013. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaerobe 23, 74-81. 

  41. Yoo, E. J., Lim, H. S., Kim, J. M., Song, S. H. and Choi, M. R. 1998. The investigation of chitosanoligosaccharide for prolongating fermentation period of kimchi. J. Kor. Soc. Food Sci. Nutr. 27, 869-874. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로